Global Solution of the Inverse Problem for a Class of Nonlinear Evolution Equations of Dispersive Type
-
摘要: 将一类非线性色散型发展方程反问题转化为抽象空间非线性发展方程Cauchy问题。利用半群方法和赋等价范数技巧,建立了该类抽象发展方程整体解的存在唯一性定理,并应用于所论反问题,得到了该类非线性色散型发展方程反问题整体解的存在唯一性定理,本质地改进了袁忠信得出的解的局部存在唯一性结果。Abstract: The inverse problem for a class of nonlinear evolution equations of dispersive type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equipping equivalent norm technique, the existence and uniqueness theorem of global solution was obtained for this class of abstract evolution equations, and was applied to the inverse problem discussed here. The existence and uniqueness theorem of global solution was given for this class of nonlinear evolution equations of dispersive type. The results extend and generalize essentially the related results of the existence and uniqueness of local solution presented by YUAN Zhongxin.
-
Key words:
- pseudo-parabolic equation /
- nonlinear evolution equation /
- inverse problem
-
[1] 袁忠信.一类非线性色散型发展方程的反问题[J].应用数学学报,1991,14(2):174-179. [2] Showalter R E,Ting T W.Pseudo parabolic partial differential equation[J].SIAM Math Anal,1970,1(1):1-26. [3] Pazy A.Semigroup of Linear Operators and Applications to Partial Differential Equation[M].New York:Springer-Verlag,1983,162-177. [4] Friedman A.Partial Differential Equations[M].New York:Holt,Rinehart and Winston,Inc,1969,83-92. [5] 齐民友.线性偏微分算子引论[M].上册.北京:科学出版社,1986,410-411. [6] Deimling K.Nonlinear Functional Analysis[M].Berlin:Springer-Verlag,1985,137-144.
计量
- 文章访问数: 2479
- HTML全文浏览量: 137
- PDF下载量: 749
- 被引次数: 0