留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含液体非弹性多孔介质中波传播过程的失稳与逸散性

李锡夔 张俊波 张洪武

李锡夔, 张俊波, 张洪武. 含液体非弹性多孔介质中波传播过程的失稳与逸散性[J]. 应用数学和力学, 2002, 23(1): 31-46.
引用本文: 李锡夔, 张俊波, 张洪武. 含液体非弹性多孔介质中波传播过程的失稳与逸散性[J]. 应用数学和力学, 2002, 23(1): 31-46.
LI Xi-kui, ZHANG Jun-bo, ZHANG Hong-wu. Instability and Dispersivity of Wave Propagation in Inelastic Saturated/Unsaturated Porous Media[J]. Applied Mathematics and Mechanics, 2002, 23(1): 31-46.
Citation: LI Xi-kui, ZHANG Jun-bo, ZHANG Hong-wu. Instability and Dispersivity of Wave Propagation in Inelastic Saturated/Unsaturated Porous Media[J]. Applied Mathematics and Mechanics, 2002, 23(1): 31-46.

含液体非弹性多孔介质中波传播过程的失稳与逸散性

基金项目: 国家自然科学基金项目(19832010)资助
详细信息
    作者简介:

    李锡夔(1940- ),男,上海市人,博士,教授,博导,中国力学学会理事,中国力学学会固体力学专业委员会副主任,"Int J Numerical Method Eng"编委.

  • 中图分类号: O347.4;0347.7;0344.7;TU43

Instability and Dispersivity of Wave Propagation in Inelastic Saturated/Unsaturated Porous Media

  • 摘要: 在基于Biot理论的饱和-非饱和多孔介质的动力-渗流模型中计及流固惯性耦合效应。对单轴应变的一维情况讨论了饱和和非饱和多孔介质中波传播过程的驻值失稳和逸散性,分析了流固粘性耦合,流固惯性耦合,流固混合体的压缩性,孔隙水饱和度,及固体骨架在高应变速率下材料粘弹塑性本构行为等因素的影响。该工作将对克服饱和与非饱和多孔介质在强动荷载下波传播过程的数值求解困难提供理论上的依据和启示。
  • [1] Hil1R.Accelerationwavesinsolids[J].Journal of the Mechanics and Physics of Solids,1962,10(1):1-16.
    [2] BazantZP, Belytschko TB.Wave propagation in a strain softening bar:axact solution[J].ASCEJournal of Engineering Mechanics, 1985,111(3):381-389.
    [3] Sluys L J, Muhlhaus H B, Borst Rde.Wave propagation, localization and dispersion in a gradient-dependent medimn[J].Int J Solids Structures, 1992,30(9): 1153-1171.
    [4] Sluys L J, Wave propagation, localization and dispersion in softening solids.Dissertation[D].Delft University of Technology, Delft,1992.
    [5] Rudnicki K, Rice J R.Conditions for the loralization of deformation in pressure-Sensitive dilatant materials[J].Journal of the Mechanics and Physics of Solids,1975,23:371-394.
    [6] Rice JR.On the stability of dilatant hardening for satutated rock masses[J].Journal of G-eophysical Research, 1975,80:1531-1536.
    [7] LoretB, PrevostJH.Dynamic strain localization in fluid-satturatec porous media[J].Journal of Engineering Mechancis, 1991,117(4):907-922.
    [8] Pietrusacaak S.Undrained response of granular soil involving localized deformation[J].Journal of Engineering Mechanics, 1995,121(12): 1292-1297.
    [9] Gajo A.The effects of inertial coupling in the intetpretation of dynamic soil tests[J].Geotechnique,1996,46(2): 245-257.
    [10] Runesson K, Peric D.Effect of pore fluid compressibility on localization in elastic-plastic porous solids under undrained conditions[J].Int J Solids Structures, 1996,33(10): 1501-1518.
    [11] Biot M A.Theory of three-dimnensional consolidation[J].JApplied Physics,1941,12:155-164.
    [12] Biot M A.Theory of propagation of elastic waves in a fluid-satutated porous solid.Ⅰ.Low-frequencyrange[J].The Journal of the Acoustical Society of America, 1956,28(2): 168-178.
    [13] Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid, II Higher frequency range[J].Tne Journal of the Acoustical Society of America, 1956,28(2): 179-191.
    [14] ZienkiewiczOC, Shomi T.Dynamic behavior of satutated porous media: the generalized Biot formulation and its numerical solution[J].Int J Numerical and Analytical Methods in Geo-Mechanics, 1984,8(1): 71-96.
    [15] LI Xi-kui, Zienkiewica O C, XIE Y M.A nmnerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution[J].Int J Numer Methods Eng, 1990, 30(6): 1195-1212.
    [16] LI Xi-kui, Zienkiewicz O C.Multiphase flow in deforming porous media and finite elernent soluttion[J].Computers & Structures, 1992,45(2):211-227.
    [17] Lewis R W, Schrefler B A.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M].England: John Wiley & Sons Ltd, 1998.
    [18] Lewis R W, Sukirman Y.Finite element modelling for simulating the surface subsidence above acompacting hyddrocarbon reservoir[J].Int J Numerical and Analytical Methods in Geo-Mechanics,1994,18: 619-639.
    [19] Meroi E A, Schrefler B A.Large strain static and dynamic semi-saturated solild behavior[J].Int JNumerical and Analytical Methods in Geo-,ecjamocs in Geo-mechanics, 1995,19:81-106.
    [20] LIXi-kui, Thomas H R, Fan YQ.Finite element methoc and comstitutive modelling and computationfor unsaturated soils[J].Computer Methods in Applied Mechanics and Eng,1999,169(1~2):135-159.
    [21] AlonsoEE, GensA, JosaA.A constitutive model forpartially satutatedsoils[J].Geotechnique,1990,40(3):405-430.
    [22] Zienkiewicz O C, TaylorR.The Finite Element Method,Vol.2[M].England: Butterworth-Heinemann,2000.
    [23] Duxbury P G, LI Xi-kui.Development of elasto-plastic material models in a natural co-ordinate system[J].C omputer Methods in Appplied Mechanics and Eng, 1996,135(3~4):283-306.
    [24] LI Xi-kui, Cescotto S.A mixed eleement method in gradient plasticity for pressure dependent Materials and modelling of strain localization[J].Computer Methods in Applied Mechancis and Engineering, 1997,144(3~4):287-305.
  • 加载中
计量
  • 文章访问数:  2080
  • HTML全文浏览量:  98
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-07-27
  • 修回日期:  2001-10-09
  • 刊出日期:  2002-01-15

目录

    /

    返回文章
    返回