留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Phillips模式非线性不稳定的饱和问题(Ⅰ)——基流不稳定时扰动演变的上界估计

张瑰 项杰 李东辉

张瑰, 项杰, 李东辉. 广义Phillips模式非线性不稳定的饱和问题(Ⅰ)——基流不稳定时扰动演变的上界估计[J]. 应用数学和力学, 2002, 23(1): 73-81.
引用本文: 张瑰, 项杰, 李东辉. 广义Phillips模式非线性不稳定的饱和问题(Ⅰ)——基流不稳定时扰动演变的上界估计[J]. 应用数学和力学, 2002, 23(1): 73-81.
ZHANG Gui, XIANG Jie, LI Dong-hui. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(1): 73-81.
Citation: ZHANG Gui, XIANG Jie, LI Dong-hui. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(1): 73-81.

广义Phillips模式非线性不稳定的饱和问题(Ⅰ)——基流不稳定时扰动演变的上界估计

基金项目: 国家自然科学基金资助项目(40075014)
详细信息
    作者简介:

    张瑰(1973),女,安徽人,硕士.

  • 中图分类号: P433;0351

Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow

  • 摘要: 在Arnd'd第二定理的范围内讨论广义Phillips模式非线性不稳定的饱和问题,对于因模式的物理参数与区域的几何参数不满足稳定判据而导致的不稳定基流,得到扰动能量与位涡拟能的上界估计。
  • [1] Shepherd T G.Nonlinear saturation of baroclinic instability.Part-one: the two-layer model[J].Journal of the Atmospheric Sciences, 1988,Vo1.45(14):2014-2025.
    [2] Shepherd T G.Nonlinear saturation of baroclinic insability.part-two: Continuousiy-statified fluid [J].Journalof the Atmospheric Sciences,1989,46(7):888-907.
    [3] Shepherd T G.Nonlinear saturation of baroclinic instability.Part-Three: bounds on tie energy[J].Jorrnal of the Atemospheric Sciences, 1993,Vol.50(16):2697-2709.
    [4] ZENG Qing-cun.Variational principle of instability of atrnosphic motions[J].Adv Atmos Sci,1989,6(2): 137-172.
    [5] MU Mu.Nonlinear stability theorem of two-dimensional quasi-geostrophic motions geophys astroph[J].Fluid Dynamics, 1992,65:57-76.
    [6] Paret J, Vanneste J.Nonlinear saturation of haroclinic instability in a three-layer model[J].J Atmos Sci, 1996,53(20), 2905-2917.
    [7] Cho H R, Shepherd T G, Vladimirov V A.Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J].J Atmos Sci, 1993,50(6): 822-334.
    [8] MU Mu, Shepherd T G, Swanson K.On nonlinear symmetric stablity and the nonlinear saturation of symmetric instability[J].J Atmos Sci, 1996,53(20):2918-2923.
    [9] MU Mu, ZENG Qing-cun, Shepherd T G, et al.Nonlinear stability of multilayer quasi-geostrophic flow[J].J Fluid Mech, 1994,264:165-184.
    [10] 张瑰.广义Phillips模式的非线性稳定性判据[J].空军气象学院学报,,1999,20(2):133-143.Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)-the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J].IEEE AC,1999,44(2):334-336.
  • 加载中
计量
  • 文章访问数:  2051
  • HTML全文浏览量:  116
  • PDF下载量:  579
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-01-16
  • 修回日期:  2001-10-29
  • 刊出日期:  2002-01-15

目录

    /

    返回文章
    返回