Study for the Bifurcation Topological Structure and the Global Complicated Character of a Kind of Non-Linear Finance System(Ⅱ)
-
摘要: 首先从一类复杂金融系统的数学模型出发,在前期研究工作的基础上,主要研究这一模型所反映的我国宏观金融系统运行中可能出现的各种情况:平衡、稳定周期、分形、Hopf分岔、参数与Hopf分岔之间的关系、直到混沌运动等.通过理论分析和数值模拟计算来研究模型中各参数的变化情况,然后依此来分析这类金融系统局部产生复杂行为的条件,以及某一参数的变化对宏观经济政策的调整及对整个金融系统行为的影响情况,这一研究将有助于加深人们对各种金融政策杠杆作用的理解.Abstract: Based on the work discussed on the former study, this article first starts from the mathe matical model of a kind of complicated financial system, and analyses all possible things that the mod el shows in the operation of our country's macro-financial system:balance, stable periodic, fractal, Hopf-bifurcation, the relationship between parameters and Hopf-bifurcation, and chaotic motion etc. By the changes of parameters of all economic meanings, the conditions on which the complicated be haviors occur in such a financial system, and the influence of the adjustment of the macro-economic policies and adjustment of some parameter on the whole financial system behavior have been ana lyzed. This study will deepen people's understanding of the lever function of all kinds of financial policies.
-
Key words:
- stable periodic /
- bifurcation /
- chaotic /
- topological structure /
- global complicated character
-
[1] 成思危.复杂科学与管理[A].见:成思危编.北京香山会议论文集[C].北京:科学出版社,1998,1-9. [2] 黄登仕,李后强.非线性经济学的理论和方法[M].成都:四川大学出版社,1993. [3] 陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995. [4] 李京文.混沌理论与经济学[J].数量经济技术经济研究,1991,24(2):19-26. [5] Brunella M,Miarim.Topological equivalence of a place vector field with its principal past defined through Newton polyhedra[J].J Differential Equations,1990,85(6):338-366. [6] Cima A,Llibre.Algebraic and topological classification of the homogenenous cubicvector fields in the plane[J].J Math Anal Appl,1990,47(4):420-448. [7] Omer Morgul.Necessary condition for observer-based chaos synchron ization[J].Phys Rev Lett,1999,82(9):77-80. [8] 杨小京.一类平面齐次多项式系统的局部相图[J].系统科学与数学,1999,19(4):150-156. [9] Clerc M,Coullet P,Tirapegui E.Lorenz bifurcation:insta bilities in quasireversible systems[J].Phys Rev Lett,1999,19(11):3820-3823. [10] Sengupta Jati K,Sfeir Raymond E.Nonlinear dynamics in for eignexchange markets[J].International Journal of Systems Science,1998,29(11):1213-1224. [11] 马军海.陈予恕.一类金融系统分岔混沌拓扑结构与全局复杂性研究(Ⅰ) [J].应用数学和力学,2001,22(11):1119-1128. [12] Freedman H I,Singh M,Easton A K,et al.Mathematical models of population distribution within a culture group[J].Mathematical and Computer Modelling,1999,29(6):257-267. [13] Lipton-Lifschitz Alexander.Predictability and unpredictability in financial markets[J].Phys D,1999,133(12):321-347.
计量
- 文章访问数: 3231
- HTML全文浏览量: 249
- PDF下载量: 829
- 被引次数: 0