留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用时域边界元法分析半圆表面裂纹的动态应力强度因子

钟明 张永元

钟明, 张永元. 用时域边界元法分析半圆表面裂纹的动态应力强度因子[J]. 应用数学和力学, 2001, 22(11): 1211-1216.
引用本文: 钟明, 张永元. 用时域边界元法分析半圆表面裂纹的动态应力强度因子[J]. 应用数学和力学, 2001, 22(11): 1211-1216.
ZHONG Ming, ZHANG Yong-yuan. The Analysis of Dynamic Stress Intensity Factor for Semi-Circular Surface Crack Using Time-Domain BEM Formulation[J]. Applied Mathematics and Mechanics, 2001, 22(11): 1211-1216.
Citation: ZHONG Ming, ZHANG Yong-yuan. The Analysis of Dynamic Stress Intensity Factor for Semi-Circular Surface Crack Using Time-Domain BEM Formulation[J]. Applied Mathematics and Mechanics, 2001, 22(11): 1211-1216.

用时域边界元法分析半圆表面裂纹的动态应力强度因子

详细信息
    作者简介:

    钟明(1969- ),男,上海奉贤人,博士.

  • 中图分类号: O346.1

The Analysis of Dynamic Stress Intensity Factor for Semi-Circular Surface Crack Using Time-Domain BEM Formulation

  • 摘要: 发展了时域边界元法在分析三维裂纹的动态应力强度因子(DSIF)方面的应用,采用了等参单元及其奇性元很好地模拟了三维裂纹应力场奇异性,首次用时域边界元法位移方程计算了半圆表面裂纹的DSIF。提出并讨论了时间步长的选取方案。自编了时域边界元法动态分析程序,几个算例说明了时域边界元法在三维动态断裂问题中可以得到很好的精度。
  • [1] Chen Y M, Wilkins M L. Numerical analysis of dynamic crack problems[A]. In: G C Sih Ed. Mechanics of Fracture, Volume 4[C]. Leyden: Noordhoff, 1977.
    [2] Nishioka T. Recent developments in computational dynamic fracture mechanics[A]. In: M H Aliabadi Ed. Dynamic Fracture Mechanics[C]. Southampton: Computational Mechanics Publications, 1995.
    [3] Brebbia C A, Telles J C F, Wrobel L C. Boundary Element Techniques: Theory and Applications in Engineering[M]. Berlin: Springer-Verlag, 1984.
    [4] Beskos D E. Boundary element methods in dynamic analysis: Part II (1986-1996)[J]. Appl Mech Rev. 1997, 50(3): 149-197.
    [5] Aliabadi M H. Boundary element formulations in fracture mechanics[J]. Appl Mech Rev, 1997, 50(2): 83-96.
    [6] Sladek J, Sladek V. Dynamic stress intensity factors studied by boundary integro-differential equations[J]. Int J Numer Methods Engng, 1986, 23(5): 919-928.
    [7] Zhang Y Y, Shi W. Transient analysis of three-dimensional crack problems by the Laplace transform boundary element method[J]. Engng Fracture Mech, 1994, 47(5): 715-722.
    [8] Wen P H. Dynamic Fracture Mechanics: Displacement Discontinuity Method[M]. Southampton, Boston: Comput Mech Publication, 1996.
    [9] Fedelinski P, Aliabadi M H, Rooke D P. Cracks in three dimensions: dynamic dual boundary element analysis[J]. Comput Methods in Appl Mech Engng, 1998, 167(1-2): 139-151.
    [10] Wen P H, Aliabadi M H, Rooke D P. A variational technique for boundary element analysis of 3D fracture mechanics weight functions: Dynamic[J]. Int J Numer Meth Engng, 1998, 42(8): 1425-1439.
    [11] Hirose S, Achenbach J D. Time-domain boundary element analysis of elastic wave interaction with a crack[J]. Int J Numer Methods Engng, 1989, 28(1-3): 629-644.
    [12] Dominguez J, Gallego R. Time domain boundary element method for dynamic intensity factor computations[J]. Int J Numer Methods Engng, 1992, 33(3): 635-647.
    [13] Dominguez J. Boundary Elements in Dynamics[M]. Southampton: Comput Mech Publication, 1993.
    [14] Ahmad S, Banerjee P K. Time-domain transient elastodynamic analysis of 3-D solids by BEM[J]. Int J Numer Methods Engng, 1988, 26(8): 1709-1728.
    [15] Eringen A C, Suhubi E S. Elastodynamics, Vol 2, Linear theory[M]. New York: Academic Press, 1975.
    [16] Banerjee P K, Ahmad S, Manolis G D. Transient elastodynamic analysis of 3-D problems by boundary element method[J]. Earthquake Engng Struct Dyn, 1986, 14(6): 933-949.
    [17] Dominguez J, Gallego R. The time domain boundary element method for elastodynamic problems[J]. Math Comput Modell, 1991, 15(3-5): 119-129.
    [18] Luo G M, Zhang Y Y. Application of BEM with singular and isoparametric elements in 3-D crack problems[J]. Engng Fracture Mech, 1988, 29(1): 97-106.
  • 加载中
计量
  • 文章访问数:  2424
  • HTML全文浏览量:  122
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-10-09
  • 修回日期:  2001-03-20
  • 刊出日期:  2001-11-15

目录

    /

    返回文章
    返回