留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维非定常水的跨血管壁流动与大分子的跨血管壁传质

黄浩 温功碧

黄浩, 温功碧. 三维非定常水的跨血管壁流动与大分子的跨血管壁传质[J]. 应用数学和力学, 2001, (10): 1043-1057.
引用本文: 黄浩, 温功碧. 三维非定常水的跨血管壁流动与大分子的跨血管壁传质[J]. 应用数学和力学, 2001, (10): 1043-1057.
HUANG Hao, WEN Gong-bi. A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall[J]. Applied Mathematics and Mechanics, 2001, (10): 1043-1057.
Citation: HUANG Hao, WEN Gong-bi. A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall[J]. Applied Mathematics and Mechanics, 2001, (10): 1043-1057.

三维非定常水的跨血管壁流动与大分子的跨血管壁传质

基金项目: 国家自然科学基金资助项目(19732003)
详细信息
    作者简介:

    黄浩(1972- ),男,湖北人,硕士;温功碧(1935- ),女,四川人,教授(E-mail:wengb@mech.pku.edu.cn).

  • 中图分类号: R318.01

A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall

  • 摘要: 对水的跨血管壁流动与大分子的跨血管对流-扩散传质提出一个统一的三维非定常模型。研究了内皮细胞在转换过程中形成漏的缝隙后的大分子跨壁传质,其浓度随时间的增长,内皮细胞截面形状对浓度分布的影响及生理参数对浓度分布的影响。采用解析方法求出了水跨壁流动的速度场与压力场的分析解:根据以前学者对血管壁的超微结构研究,将血管壁分为4层,用数值模拟方法求解了低密度脂蛋白(LDL)、血清白蛋白(albumin)以及辣根过氧化酶(HRP)三种大分子在各层的浓度分布。结果表明,随着时间的增长,在不同时刻,低剪切流中内皮细胞截面形状接近圆形时,大分子在漏的缝隙处浓度大小和分布范围,都大于高剪切流中内皮细胞截面被拉长时的情形:弹性层厚度等参数显著地影响传质:浓度分布随时间的增长与轴对称结果类似,即漏的缝隙处有一明显的浓度尖峰,在两侧浓度迅速减少,浓度尖峰值和浓度分布的范围随着时间的增长而降低与变小。这些结果对了解动脉粥样硬化形成的机理有重要意义。
  • [1] 温功碧.动脉粥样硬化成因和大分子跨血管的传质[J].力学进展,1993,23(2):223-233.
    [2] Caro C G,Fitz-Gerald J M,Schroter R C.Arterial wall sheer and distribution of early atheroma in man[J].Nature(Lond),1969,223(5211):1159-1161.
    [3] Fry D L,Cornhill J F,Sharma H,et al.Uptake of low density lipoprotein,albumin and water by deendothelialized in vitro minipig aorta[J].Arteriosclerosis,1989,6:475-490.
    [4] Stemerman M B,Morrel Em,Durke K R,et al.Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta[J].Arteriosclerosis,1986,6(1):64-69.
    [5] Chien S,Lin S,Weinbaum S,et al.The role of arterial endothelial cell mitosis in macromolecular permeability[J].Advances in Experimental Medicine &Biology,1988,242:59-73.
    [6] Lin S,Jan K M,Schuessler G,et al.Enhanced macromolecular permeability of aortic endothelial cells in association with mitosis[J].Atherosclerosis,1988,73(2,3):223-232.
    [7] Chuang P,Cheng J,Lin S,et al.Macromolecular transport across arterial and venous endothelium in rats:studies with evans blue-albumin and horseradish peroxidase[J].Arteriosclerosis,1990,10(2):188-197.
    [8] Weinbaum S,Tzeghai G,Ganatos P,et al.Effect of cell turnover and leaky junctions on arterial macromolecular transport[J].Am J Physiol,1985,248(6):H945-H960.
    [9] 温功碧,Weinbaum S,Ganatos P,et al.大分子跨血管壁的非定常扩散--模型和观察[J].力学学报,1989,21(3):290-299.
    [10] Weinbaum S,Ganatos P,Pfeffer R,et al.On the time-dependent diffusion of macromolecules through transient open junctions and their subendothelial spread 1 short-time model for cleft exit region[J].J Theor Biol,1988,135(1):1-30.
    [11] Fry D L,Cornhill J F,Sharma H,et al.Uptake for low density lipoprotein,albumin,and water by deendothelialized in vitro minipig aorta[J].Arteriosclerosis,1986,6(5):475-490.
    [12] Campbell G J,Roach M R.Fenestrations in the internal elastic lamina at bifurcations of human cerebral arteries[J].Stroke,1981,12(4):1,489-496.
    [13] Song S H,Roach M R.Quantitative changes in the size of fenestrations of elastic laminae of sheep thoracic aorta studied with SEM1[J].Blood Vessels,1983,20(3):145-153.
    [14] Yuan F,Chien S,Weinbaum S.A new view of convective-diffusive transport processes in the arterial intima[J].J Biomech Eng,1991,113(3):314-329.
    [15] 温功碧,姚大康.关于水和大分子跨血管壁传质问题的一个统一的数学模型[J].中国生物医学工程学报,1994,13(1):54-66.
    [16] Huang Y,Rumschitzki D,Chien S,et al.A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima[J].J Biomech Eng,1994,116(4):430-445.
    [17] Truskey G A,Roberts W L,Herrmann R A,et al.Measurement of endothelial permeability to125 I-low density lipoproteins in rabbit arteries by use of en face preparations[J].Circulation Research,1992,71(4):883-897.
    [18] Lark M W,Yeo T,Mar T,et al.Arterial chondroitin sulfate proteoglycan;localization with a monoclonal antibody[J].The J Histochemistry and Cytochemistry,1988,36(10):1211-1221.
    [19] Wen G B,Feng J J.A three dimensional convective-diffusive model for the transportation of macromolecules and water across the arterial wall[J].Chinese J Mechanics Press,1995,11(3):267-274.
    [20] 忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].长沙:国防科技大学出版社,1989,220-251.
    [21] 徐萃薇.计算方法引论[M].北京:高等教育出版社,1985,239-283.
    [22] Anderson D A,Tannehill J C,Pletcher R H.Computational Fluid Mechanical and Heat Transfer[M].New York:Press Roman,1984,247-255.
    [23] Tzeghai G,Ganatos P,Pfeffer R,et al.A theoretical model to study the effect of convection and leaky junctions on macromolecule transport in artery walls[J].J Theor Biol,1986,121(2):141-162.
    [24] Wen G B,Weinbaum S,Ganatos P,et al.On the time-dependent diffusion of macromolecules through transient open junctions and their subendothelial spread,2 long-time model for interaction between leakage sites[J].J Theor Biol,1988,135(2):219-253.
    [25] Vargas C B,Vargas F F,Pribyl J G,et al.Hydraulic conductivity of the endothelial and outer layers of the rabbit aotra[J].Am J Physiol,1979,236(1):H53-H60.
    [26] Nerem R M,Levesque M J,Cornhill J F,et al.Vascular endothelial morphology as an indicator of blood flow[J].Biomech Eng,1981,103(3):172-176.
  • 加载中
计量
  • 文章访问数:  2633
  • HTML全文浏览量:  123
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-08-03
  • 修回日期:  2001-05-08
  • 刊出日期:  2001-10-15

目录

    /

    返回文章
    返回