Nonlinear Bending Theory of Diagonal Square Pyramid Reticulated Shallow Shells
-
摘要: 双层网壳是大型空间结构的主要结构形式,斜放四角锥扁网壳就是其中一种.它主要依靠上、下表层承受载荷,网壳腹部则比较空而且柔.根据斜放四角锥扁网壳的几何和力学特点,在三个基本假定的基础上,把它连续化并等效成一夹层扁壳.先从能量和内力等效的角度来分析它的本构关系,然后运用虚功原理,推导出斜放四角锥扁网壳几何非线性弯曲理论的基本方程.Abstract: Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.
-
[1] 董石麟,夏亨熹.正交正放网架结构的拟板(夹层板)分析法[J].建筑结构学报,1982,3(2):14-25. [2] 董石麟,樊晓红.斜放四角锥网架结构的拟夹层板分析法[J].工程力学,1986,3(2):112-126. [3] LIU Ren-huai,LI Dong,NIE Guo-hua,CHENG Zheng-qiang.Non-linear buckling of squarely-latticed shallow spherical shells[J].International Journal of Non-Linear Mechanics,1991,26(5):547-565. [4] 刘人怀,聂国华.网格扁壳的非线性弯曲理论[J].江西工业大学学报,1991,13(2):186-192. [5] 刘人怀,聂国华.网格扁壳的非线性振动分析[J].江西工业大学学报,1991,13(2):193-198. [6] 聂国华,刘人怀,翁智远.网格扁壳结构的非线性弯曲与稳定问题研究[J].上海力学,1994,15(2):17-27. [7] 聂国华,刘人怀.矩形网格扁壳结构的非线性弹性理论[J].应用数学和力学,1994,15(5):389-397. [8] 聂国华,刘人怀.矩形网格扁壳的非线性特征关系[J].土木工程学报,1995,28(1):12-21. [9] 刘人怀,肖潭.双层正交正放网格扁壳结构的非线性弯曲理论[A].见:庄逢甘编.现代力学与科技进步[C].北京:清华大学出版社,1997,1212-1215. [10] 刘人怀,肖潭.矩形底双层网格扁壳的非线性弯曲[J].暨南大学学报,1998,19(3):1-5. [11] 刘人怀,肖潭.矩形底双层网格扁壳的非线性屈曲[J].暨南大学学报,1999,20(1):1-6
计量
- 文章访问数: 2052
- HTML全文浏览量: 129
- PDF下载量: 582
- 被引次数: 0