留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具公共值的Fredholm紧映射

J. M. 索里阿诺

J. M. 索里阿诺. 具公共值的Fredholm紧映射[J]. 应用数学和力学, 2001, 22(6): 609-612.
引用本文: J. M. 索里阿诺. 具公共值的Fredholm紧映射[J]. 应用数学和力学, 2001, 22(6): 609-612.
J. M. Soriano. Fredholm and Compact Mappings Sharing a Value[J]. Applied Mathematics and Mechanics, 2001, 22(6): 609-612.
Citation: J. M. Soriano. Fredholm and Compact Mappings Sharing a Value[J]. Applied Mathematics and Mechanics, 2001, 22(6): 609-612.

具公共值的Fredholm紧映射

基金项目: D.G.E.S.PB基金资助项目(96-1338-CO2-01);Junta de Andalucia基金
详细信息
  • 中图分类号: O177.2;O192

Fredholm and Compact Mappings Sharing a Value

  • 摘要: 给出了Banach空间之间的两个可微映射具有公共值的充分条件,证明的方法本质上是基于延拓法。
  • [1] Allgower E L, Georg K. Numerical Cont inuation Method[M]. Springer Series in Computational Mathematics 13.New York: Springer-Verlag,1990.
    [2] Allgower E, Clashoff K, Peitgen H. A Survey of Homotopy Methods for Smooth Mappings[M]. Berlin: Springer-Verlag,1981,2-29.
    [3] Allgower E, Glashoff K, Peitgen H. A survey of homotopy methods for smooth mappings[A]. In: Proceedings of the Conference on Numerical Solutions of Nonlinear Equations[C]. Bremen, July,1980,Lecture Notes in Math[M]. 878.Berlin: Springer-Verlag,1981,1-29.
    [4] Alexander J C, York J A. Homotopy continuation methods: numerically implementable topological procedures[J]. Trans Amer Math Soc,1978,242:271-284.
    [5] Bernstein S. Surla generalisation du problème de Dirichlet Ⅰ[J]. Math Anal,1906,62:253-270.
    [6] Bernstein S. Surla generalisation duproblème de Dirichlet Ⅱ[J]. Math Anal,1910,69:82-136.
    [7] Leray J, Shauder J. Topologie et equations of fonctionalle s[J]. Ann Sci Ecole Norm Sup,1934,51:45-78.
    [8] Garcia C B, Li. On the number of solutions to polynomial systems of nonlinear equations[J]. SIAM J Numer Anal,1980,17:540-546.
    [9] Garcia C B, Zangwill W I. Determining all solutions to certain systems of nonlinear equations[J]. Math Oper Res,1979,4:1-14.
    [10] Zeidler E. Nonlinear Functional Analysis and Its Applications [M]. New York: Springer-Verlag,1985.
    [11] Soriano J M. Global minimum point of a convex function[J]. Appl Math Comput,1993,55(2-3):213-218.
    [12] Soriano J M. Extremum points of a convex function[J]. Appl Math Comput,1994,66:261-266.
    [13] Soriano J M. On the existence of zero points[J]. Appl Math Comput,1996,79:99-104.
    [14] Soriano J M. On the number of zeros of a mapping[J]. Appl Math Comput,1997,88:287-291.
    [15] Soriano J M. Existence of zeros for bounded perturbations of prop er mappings[J]. Appl Math Comput,1999,99:255-259.
    [16] Soriano J M. Mappings sharing a value on finite-dimensional spaces[J]. Appl Math Comput,(pending publication)
    [17] Soriano J M. On the Bezout theorem real case[J]. Appl Nonlinear Anal,1995,2(4):59-66.
    [18] Soriano J M. On the Bezout theorem[J]. Commun Nonlinear Anal,1997,4(2):59-66.
    [19] Soriano J M. Zeros of compact perturbations of proper mappings[J]. Appl Nonlinear Anal,2000,7(4):31-37.
    [20] Soriano J M. Compact mappings and proper mappings between Banach spaces which share a value[J]. Math Balkanica,2000,14(1) (2).
  • 加载中
计量
  • 文章访问数:  2127
  • HTML全文浏览量:  105
  • PDF下载量:  779
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-11-22
  • 刊出日期:  2001-06-15

目录

    /

    返回文章
    返回