留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C-L方法及其在工程非线性动力学问题中的应用

陈予恕 丁千

陈予恕, 丁千. C-L方法及其在工程非线性动力学问题中的应用[J]. 应用数学和力学, 2001, 22(2): 127-134.
引用本文: 陈予恕, 丁千. C-L方法及其在工程非线性动力学问题中的应用[J]. 应用数学和力学, 2001, 22(2): 127-134.
CHEN Yu-shu, DING Qian. C-L Method and Its Application to Engineering Nonlinear Dynamical Problems[J]. Applied Mathematics and Mechanics, 2001, 22(2): 127-134.
Citation: CHEN Yu-shu, DING Qian. C-L Method and Its Application to Engineering Nonlinear Dynamical Problems[J]. Applied Mathematics and Mechanics, 2001, 22(2): 127-134.

C-L方法及其在工程非线性动力学问题中的应用

基金项目: 国家自然科学基金资助项目(重大19990510);国家重点基础研究专项经费资助项目(G1998010316)
详细信息
    作者简介:

    陈予恕(1931- ),男,山东肥城人,教授,博士导师,俄国应用科学院国外院士.

  • 中图分类号: O322;O175

C-L Method and Its Application to Engineering Nonlinear Dynamical Problems

  • 摘要: C-L方法可以揭示非线性振动系统的分岔特性,它结合对称性和奇异性理论并将Liapunov-Schmidt(简称LS)约化方法推广到非自治系统.作为应用实例,分析了非线性转子动力学低频振动分岔失稳问题的机理及其控制.
  • [1] Krylov N,Bogoliubov N.Les methodes de la mecarique nonlineaire[J].Chaire de la Phys,and Math of Academic Science U K,1934,8,44-51.
    [2] Chen Y S,Langford W F.The subharmonic bifurcation solution of nonlinear Mathieu's equation and Euler dynamically buckling problem[J].Acta Mech Sinica,1988,4(4):350-362.
    [3] Noah S T,Sundararajan P.Significance of considering nonlinear effects in predicting the dynamic behavior of rotating machinery[J].J Vib Control,1995,1(1):431-458.
    [4] Nataraj C,Nelson H D,Arkere N.The effect of a Coulomb spine on rotor dynamics/analysis[A].In:Instability in Rotating Machinery NASA CP-2409[C].New York:Springer,1985,225-233.
    [5] Shaw J,Shaw S W.The effects of unbalance on oil whirl[J].Nonlinear Dynamics,1990,1(4):293-311.
    [6] Sundararajan P,Noah S T.Dynamics of forced nonlinear systems using shooting arc length continuation method[J].ASME J Vib Acous,1997,119(1):9-20.
    [7] Chen Y S,Ding Q.Stability and bifurcation of nonlinear rotor dynamics[J].J Nonlinear Dynamics in Sci Tech,1996,3(1):13-22.
    [8] Chen Y S,Meng Q.Bifurcations of a nonlinear rotor/bearing system[J].J Vib Engng,1996,9(3):266-275.
    [9] Chen Y S,Ding Q.Stability and Hopf bifurcation of nonlinear rotor/bearing system[J].J Vib Engng,1997,10(3):368-374.
    [10] Ding Q,Chen Y S.Study on mechanism subharmonic instability of nonlinear rotor/bearing system[J].J Vib Engng,1997,10(4):404-412.
    [11] Yu P,Huseyin K.Parametrically excited nonlinear systems:a comparison of certain methods[J].Int J Nonli Mech,1998,33(6):967-978.
    [12] Chow S Y,Hale J K.Methods of Bifurcation Theory[M].New York:Springer,1982.
    [13] Golubisky M,Schaeffer D G.Singularities and Groups in Bifurcation Theory[M].Vol.1.New York:Springer,1985.
    [14] Bogoliubov N,Mitropolsky Y A.Asymptotic Methods in the Theory of Nonlinear Oscillations[M].New York:Gordon & Breach,1961.
    [15] 陈予恕,詹凯君.《非线性Mathieu方程亚谐共振分叉理论》的一些推广[J].应用数学和力学,1990,11(3):239-245.
    [16] Chen Y S,Zhan K J,Langford W F.New results on bifurcation theory of subharmonic resonance in nonlinear system with parametric excitation:degenerate bifurcation solution[J].J Vib Engng,1990,3(2):38-47.
    [17] Chen Y S,Xu J.Global bifurcations and chaos in Van der Pol-Duffing-Mathieu's system with three-well potential oscillator[J].Acta Mech Sinica,1995,11(4):357-372.
    [18] Chen Y S,Xu J.Bifurcations in nonlinear systems with parametric excitation[J].Doklady Mathematics,Russia,1997,56(3):880-883.
    [19] Muszynska A.Improvements in lightly loaded rotor/bearing and rotor/seal models[J].ASME J Vib Acous,1988,110(2):129-136.
    [20] Carr J.Application of Center Manifold Theory[M].New York:Springer,1981.
    [21] Sethna P R.On averaged and normal form equations[J].Nonlinear Dynamics,1995,7(1):1-10.
    [22] CHEN Yu-shu,Andrew Leung.Bifurcation and Chaos in Engineering[M].London:Springer-Verlag,1988.
  • 加载中
计量
  • 文章访问数:  2416
  • HTML全文浏览量:  117
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-04-25
  • 修回日期:  2000-09-11
  • 刊出日期:  2001-02-15

目录

    /

    返回文章
    返回