留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内变量理论的电流变液本构关系

王彪 肖忠民

王彪, 肖忠民. 基于内变量理论的电流变液本构关系[J]. 应用数学和力学, 2001, 22(2): 167-181.
引用本文: 王彪, 肖忠民. 基于内变量理论的电流变液本构关系[J]. 应用数学和力学, 2001, 22(2): 167-181.
WANG Biao, XIAO Zhong-min. General Constitutive Equation of an ER Suspension Based on the Internal Variable Theory[J]. Applied Mathematics and Mechanics, 2001, 22(2): 167-181.
Citation: WANG Biao, XIAO Zhong-min. General Constitutive Equation of an ER Suspension Based on the Internal Variable Theory[J]. Applied Mathematics and Mechanics, 2001, 22(2): 167-181.

基于内变量理论的电流变液本构关系

基金项目: 国家杰出青年科学基金资助课题(19725209)
详细信息
    作者简介:

    王彪(1963- ),男,辽宁人,教授,博士,博导,长江学者.

  • 中图分类号: TB330.1

General Constitutive Equation of an ER Suspension Based on the Internal Variable Theory

  • 摘要: 研究了电流变液的微结构本构关系.其理论框架是基于内变量理论和机理的分析.电流变液是由高介电常数的颗粒悬浮在某种液体中组成的.在电场作用下,极化的颗粒将沿着电场方向聚集在一起形成链状结构.颗粒聚集体的大小和方向将随外加电场和应变率的变化进行调整,因而可以通过建立起能量守恒方程和力平衡方程来确定颗粒聚集体的大小和方向的变化.那么,一个三维的、清晰的本构关系可以由相互作用能和系统的耗散能导出.具体考虑和讨论了在简单剪切载荷作用下的系统响应,发现电流变液的切变剪薄粘滞系数同系统Mason数之间近似于幂指数∝(Mn)-082的关系.
  • [1] Tao R.Electric-field-induced phase transition in electrorheological fluids[J].Phys Rev E,1993,47:423-426.
    [2] Parthasarathy M,Klingenberg D J.Electrorheology:Mechanisms and Models[J].Materials Science and Engineering,1996,R17:57-103.
    [3] Halsey T C,Martin J E,Adolf D.Rheology of electrorheological fluid[J].Phys Rev Lett,1992,68(10):1519-1522.
    [4] Halsey T C.The structure and dynamics of electrorheological fluids[A].In:R Tao Ed.Proceedings of the Conference on Electrorheological Fluids[C].Singapore:World Scientific,1992,37-52.
    [5] Rosensweig R E.On the magnetorheology and electrorheology as states of unsymmetric stress[J].J Rheol,1995,39(1):179-192.
    [6] Klingenberg D J,Zukoski C F.Studies on the steady-shear behavior of electrorheological suspensions[J].Langmuir,1990,6:15-21.
    [7] Bonnecaze R T,Brady J F.Dynamic simulation of an electrorheological fluids[J].J Chem Phys,1992,96(3):2183-2202.
    [8] Bonnecaze R T,Brady J F.Yield stresses in electrorheological fluids[J].J Rheol,1992,36(1):73-115.
    [9] Ginder J M,Ceccio S L.The effect of electrical transients on the shear stresses in electrorheological fluids[J].J Rheol,1995,39(1):211-234.
    [10] Conrad H,Chen Y,Sprecher A F.The strength of electrorheological fluids[A].In:R Tao Ed.Proceedings of the Conference on Electrorheological Fluids[C].Singapore:World Scientific,1992,195-218.
    [11] Bossis G,Lemaire E,Volkova O.Yield stress in magnetorheological and electrorheological fluids:A comparison between microscopic and macroscopic structural models[J].J Rheol,1997,,41(3):687-704.
    [12] Martin J E,Odinek J.Aggregation,fragmentation,and the nonlinear dynamics of electrorheological fluids in oscillatory shear[J].Phys Rev Lett,1995,75(15):2827-2830.
    [13] Jordan M,Schwendt A,Hill D A,et al.Zeolite-based electrorheological fluids:Testing,modeling and instrumental artifacts[J].J Rheol,1997,41(1):75-92.
    [14] Rice J R.Inelastic constitutive relations for solids:An internal-variable theory and its application to metal plasticity[J].J Mech Phys Solids,1971,19:433-455.
    [15] Ziegler H.Introduction to Thermomechanics[M].the second,revised edition.Amsterdam:North-Holland Publishing Company,1983.
    [16] Landau L D,Lifshitz E M.Pitaevskii.Electrodynamics of Continuous Media[M].the second edition.Chapters 1 and 2.Oxford:Pergamon Press,1984.
    [17] Eringen A C,Maugin G A.Electrodynamics and ContinuaⅠ,Ⅱ[M].New York:Springer-Verlag,1990.
    [18] Bossis G,Clercx H,Grasselli Y,et al.Theoretical analysis of field induced structures in ER and MR fluids[A].In:R Tao,G D Roy Eds.Electrorheological Fluids[C].Singapore:World Scientific,1993,153-171.
    [19] Happel J,Brenner H.Low Reynolds Number Hydrodynamics[M].Chapter 9,Dordrecht:Martinus Nijhoff Publishers,1986.
    [20] Ginder J M,Davis L C.Viscoelasticity of electrorheological fluids:Role of electrostatic interactions[A].In:R Tao,G D Roy Eds.Electrorheological Fluids[C].Singapore:World Scientific,1993,267-282.
    [21] Shulman Z P,Kordonsky V I,Zaltsgendler E A,et al.Structure,physical properties and dynamics of magnetorheological suspensions[J].Int J Multiphase Flow,1986,12(6):935-955.
    [22] Takimoto Jun-Ichi.Computer simulation of model electrorheological fluids[A].In:R Tao Ed.Proceedings of the Conference on Electrorheological Fluids[C].Singapore:World Scientific,1992,53-58.
    [23] Kim S,Karrila S J.Microhydrodynamics:Principles and Selected Applications[M].Part Ⅱ,Butterworth-Heinemann Series in Chemical Engineering,Boston:Butterworth-Heinemann,1991.
  • 加载中
计量
  • 文章访问数:  2482
  • HTML全文浏览量:  110
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-03-03
  • 修回日期:  2000-11-05
  • 刊出日期:  2001-02-15

目录

    /

    返回文章
    返回