留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电基体中部分脱开的刚性导体椭圆夹杂分析

王旭 沈亚鹏

王旭, 沈亚鹏. 压电基体中部分脱开的刚性导体椭圆夹杂分析[J]. 应用数学和力学, 2001, 22(1): 32-46.
引用本文: 王旭, 沈亚鹏. 压电基体中部分脱开的刚性导体椭圆夹杂分析[J]. 应用数学和力学, 2001, 22(1): 32-46.
WANG Xu, SHEN Ya-peng. Analysis of a Partially Debonded Conducting Rigid Elliptical Inclusion in a Piezoelectric Matrix[J]. Applied Mathematics and Mechanics, 2001, 22(1): 32-46.
Citation: WANG Xu, SHEN Ya-peng. Analysis of a Partially Debonded Conducting Rigid Elliptical Inclusion in a Piezoelectric Matrix[J]. Applied Mathematics and Mechanics, 2001, 22(1): 32-46.

压电基体中部分脱开的刚性导体椭圆夹杂分析

基金项目: 国家自然科学基金资助项目(59635140)
详细信息
    作者简介:

    王旭(1969- ),男,博士研究生,研究方向:断裂力学与细观力学;沈亚鹏(1936- ),男,教授,博士生导师,研究方向:智能结构与系统.

  • 中图分类号: O343.1

Analysis of a Partially Debonded Conducting Rigid Elliptical Inclusion in a Piezoelectric Matrix

  • 摘要: 通过利用八维Stroh公式以及共形映射、解析延拓和奇点分析技术,获得了对一压电基体中已部分脱开的刚性导体椭圆夹杂二维问题的闭合形式全场解答。也推导了一些新的恒等式和求和式,通过这些恒等式及求和式可获得沿界面应力和电位移分布以及刚性夹杂转动的实形式表示。正如所预料的,在脱开界面的端部应力及电位移显现出与在压电材料Griffith界面裂纹的研究中所发现的相似的奇异行为。最后也给出了几个算例以展示所得到解答的一般性以及各种载荷条件、几何参数和机电常数等对界面处应力及电位移分布的影响。
  • [1] Deeg W F. The analysis of dislocation, crack and inclusion problems in piezoelectric solids[D]. Ph Dthesis. CA: Stanford University,1980.
    [2] McMeeking R M. On mechanical stresses at cracks in dielectrics with application to dielectric breakdown[J]. J Appl Phys,1987,62(8):3116-3122.
    [3] Pak Y E. Force on a piezoelectric screw dislocation[J]. J ASME J Appl Mech,1990,57(4):863-869.
    [4] Pak Y E. Circular inclusion problem in antiplane piezoelectricity [J]. Int J Solids and Structures,1992,29(19):2403-2419.
    [5] Kuo C M, Barnett D M. Stress singularities of interfacial cracks in bonded piezoelectric half-spaces[A]. In: Wu J J, Ting T C T, Barnett D M Eds:Modern Theory of Anisotropic Elastic Elasticity and Applications[C]. Philadelphia: SIAM Proceedings Series,1991,33-50.
    [6] Wang B. Three dimensional analysis of an ellipsoidal inclusion in piezoelectric material[J]. Int J Solids and Structures,1992,29(3):293-308.
    [7] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics[J]. J Mech Phys Solids,1992,40(4):739-76 5.
    [8] Chen T. The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium[J]. Int J Solids and Structures,1993, 30(15):1983-1995.
    [9] Chung M Y, Ting T C T. Piezoelectric solid with an elliptic inclusion or hole[J]. Int J Solids and Structures,1996,33(23):3343-3361.
    [10] Sosa H, Kutoryansky N. New developments concerning piezoelectric materials with defects[J]. Int J Solids and Structures,1996,33(23):3399-3414.
    [11] Meguid S A, Zhong Z. Electroelastic analysis of a piezoelectric elliptical inhomogeneity[J]. Int J Solids and Structures,1997,34(23):3401-3414.
    [12] Meguid S A, Deng W. Electro-elastic interaction between a screw dislocation and an elliptical inhomogeneity in piezoelectric materials[J]. Int J Solids and Structures,1998,35(13):1467-1482.
    [13] Deng W, Meguid S A. Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials[J]. ASME J Appl Mech, 1998,65(1):76-84.
    [14] Deng W, Meguid S A. Analysis of a screw dislocation inside an euiiptical inhomogeneity in piezoelectric solids[J]. Int J Solids and Structures,1999,36(10):1449-1469.
    [15] Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen:Noordhoff,1953.
    [16] 庄圻泰,张南岳. 复变函数[M]. 北京:北京大学出版社,1984.
    [17] Ting T C T. Explicit solution and inveriance of the singularities at an interface crack in anisotropic composites[J]. Int J Solids and Structures,1986,22(9):965-983.
  • 加载中
计量
  • 文章访问数:  1879
  • HTML全文浏览量:  64
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-03-21
  • 修回日期:  2000-10-05
  • 刊出日期:  2001-01-15

目录

    /

    返回文章
    返回