留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲圆管内漩涡结构分叉现象的理论研究

吴望一 谭文长 李娟 谢文俊

吴望一, 谭文长, 李娟, 谢文俊. 弯曲圆管内漩涡结构分叉现象的理论研究[J]. 应用数学和力学, 2000, 21(12): 1215-1226.
引用本文: 吴望一, 谭文长, 李娟, 谢文俊. 弯曲圆管内漩涡结构分叉现象的理论研究[J]. 应用数学和力学, 2000, 21(12): 1215-1226.
WU Wang-yi, TAN Wen-chang, LI Juan, XIE Wen-jun. Theoretical Study on the Bifurcation of Vortexes Structure for Flow in Curved Tube[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1215-1226.
Citation: WU Wang-yi, TAN Wen-chang, LI Juan, XIE Wen-jun. Theoretical Study on the Bifurcation of Vortexes Structure for Flow in Curved Tube[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1215-1226.

弯曲圆管内漩涡结构分叉现象的理论研究

基金项目: 国家教育部博士点基金资助项目;高等学校骨干教师资助计划项目
详细信息
    作者简介:

    吴望一(1933- ),男,浙江镇海人,教授,博导,在国内外刊物发表论文82篇;谭文长(1966- ),男,山东聊城人,副教授,已发表论文20余篇.

  • 中图分类号: O29;TB11

Theoretical Study on the Bifurcation of Vortexes Structure for Flow in Curved Tube

  • 摘要: 利用拓扑结构分析方法,分析了弯曲圆管内定常流在横截面上流线的奇点个数及分布规律,给出了二次流的漩涡数目由2个变为4个,流态结构发生分叉现象的理论判据。进而,利用Galerkin方法,得到了弯曲圆管内定常流的流函数和轴向速度的半解析表达式,给出了流态结构发生分叉现象的临界Dean数,所得结果与理论判则一致。
  • [1] Nerem R M. Vascular fluid mechanics, the arterial wall, and atherosclerosis[J]. Transactions of the ASME,1992,114(3):274-285.
    [2] Helmlinger G, Gerger R V, Schreck S, et al. Effects of pul satile flow on cultured vascular endothelial cell morphology[J]. J Biomechanical Eng ineering,1991,113(2):123-129.
    [3] 温功碧. 动脉粥样硬化成因和大分子跨血管的性质[J]. 力学进 展,1993,23(2):223-238.
    [4] Dean W R. Note on the motion of fluid in a curved pipe[J]. Phil Mag,1927,4(2):208-223.
    [5] Dean W R. The stream line motion of fluid in a curved pipe [J]. Phil Mag,1928,5(6):673-695.
    [6] Smith F T. Pulsatile flow in curved pipe[J]. J Fluid Mech,1975,71(1):15-42.
    [7] Berger S A, Talbot L. Flow in curved pipes[J]. Ann Rev Fluid Mech,1983,15(1):461-512.
    [8] YANG Zhong-hua, Keller H B. Multiple laminar flow through curved pipes[J]. Applied Numerical Mathematics,1986,2(3):257-271.
    [9] Jayaramen G, Tewari K. Flow in catheterised curved artery [J]. Medical Bio Eng Computing,1995,33(7):720-724.
    [10] Jayaramen G, Singh M P, Anil Kumar, et al. Reversing flow in the aorta: a theoretical model[J]. J Biomech,1984,17(5):479-490.
    [11] Greenspan G. Secondary flow in a curved tube[J]. J Fluid Mech,1973,57(1):167-176.
    [12] Dennis S C R. Calculation of the steady flow through a curved tube using a new finite-difference method[J]. J Fluid Mech,1980,99(3):449-467.
    [13] Dennis S C R, Michael N G. Dual solutions for steady laminar flow through a curved tube[J]. Quart J Mech Appl Math,1982,35(3):305-324.
    [14] Chang I J, Tarbell J M. Numerical simulation of fully developed s inusoidal and pulsatile flow in curved tubes[J]. J Fluid Mech,1985,161(1):175-198.
    [15] Daskopoulos P, Lenhoff A M. Flow in curved ducts: bifurcation structure for stationary ducts[J]. J Fluid Mech,1989,203(1) :125-148.
    [16] Nandakumar K, Masliyah J H. Bifurcation in steady laminar flow through curved tubes[J]. J Fluid Mech,1982,119(1):475-490.
    [17] Shigeru Tada, Shuzo Oshima, Ryuichiro Yamane, et al. Classificati on of pulsating flow patterns in curved pipes[J]. J Biomech Eng,1996,118(3):311-317.
    [18] Naruse T, Tanishita K. Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aorticarch[J]. J Biomech Eng,1996,118(2):180-186.
    [19] Zabielski L, Mestel A J. Unsteady blood flow in a helically symme tric pipe[J]. J Fluid Mech,1998,370(1):321-345.
    [20] 黎作武,张涵信. 含激波、漩涡和化学非平衡反应的高超声速复杂流场的 数值模拟[D]. 博士学位论文. 北京:中国空气动力研究与发展中心,1994.
    [21] Winters K. A bifurcation study of laminar flow in a curved tube of rectangular cross-section[J]. J Fluid Mech,1987,180(1): 343-369.
    [22] Zabielski L, Mestel A J. Steady flow in a helically symmetric pipe[J]. J Fluid Mech,1998,370(1):297-320.
  • 加载中
计量
  • 文章访问数:  2734
  • HTML全文浏览量:  138
  • PDF下载量:  801
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-03-21
  • 修回日期:  2000-07-11
  • 刊出日期:  2000-12-15

目录

    /

    返回文章
    返回