Numerical Simulation of Standing Solitons and Their Interaction
-
摘要: 通过数值求解由Miles导出的目前公认的的非传播孤立波的控制方程——一个带复共轭项的非线性立方SchrLdinger方程,对非传播孤立波进行研究。讨论了Miles方程中的线性阻尼系数α的值,计算表明,线性阻尼α对形成稳定的非传播孤立波影响很大,Laedke等人关于非传播孤立波的稳定性条件只是一个必要条件,而不是充分条件。模拟了两个非传播孤立波的相互作用,数值模拟表明,两个波的作用模式依赖于系统的参数,对不同的初始扰动及其演化的计算表明,只有适当的初始扰动才能形成单个稳定的非传播孤立波,否则扰动可能消失或发展成多个孤立波。
-
关键词:
- 孤立波 /
- 非传播孤立波 /
- 立方SchrLdinger方程 /
- 数值模拟
Abstract: Standing soliton was studied by numerical simulation of its governing equation,a cubic SchrLdiger equation with a complex conjugate term,which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied.Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke&Spatschek stable condition is only a necessary condition,but not a sufficient one.The interaction of two standing solitons was simulated.Simulations showed that the interaction pattern depends on system parameters.Calculations for the different initial condition and its development indicated that a stable standing soliton can be formed only for proper initial disturbance,otherwise the disturbance will disappear or develop into several solitons.-
Key words:
- soliton /
- standing soliton /
- cubic SchrLdinger equation /
- numerical simulation
-
[1] WU Jun-ru, Keolian R, Rudnick I. Observ ation of a no n-propagating hydrodynamic soliton[J]. Phys Rev Lett,1984,52:1421-1424. [2] Larraza A, Putterman S. Theory of non-propagating surface-wave solitons[J]. J Fluid Mech,1984,148:443-449. [3] Miles J W. Parametrically excited solitary waves[J]. J Fluid Mech,1984,148:451-460. [4] Laedke E W, Spatschek K H. On localized solution in nonlin ear Fara day resonance[J]. J Fluid Mech,1991,223:589-601. [5] Chen X, Wei R J, Wang B R. Chaos in non-propagating hydrod ynamics solitons[J]. Phys Rev,1996,53:6016-6020. [6] Chen W Z, Wei R J, Wang B R. Non-propagating interface solitary wave in fluid[J]. Phys Lett A,1995,208:197-200. [7] Chen W Z. Experimental observation of self-localized struc ture in granular material[J]. Phys Lett A,1995,196:321-325.[ZK) [8] 崔洪农,等. 非传播孤立波的观察及实验结果[J]. 湘潭大学自然科学学报,1986,4:27-34. [9] 崔洪农,等. 非传播孤立波的特性研究[J]. 水动力学研究与进 展,1991,6(1):18-25. [10] 周显初,崔洪农. 表面张力对非传播孤立波的影响[J]. 中国科学A辑,1992,12:1269-1276. [11] 周显初. 非传播孤立波和表面张力[J]. 力学学报,1998,30[STBZ (6):672-675. [12] 颜家壬,黄国翔. 矩形波导中两层流体界面上的非传播孤立波[J]. 物理学报,1998,37:874-880. [13] Yan J R, Mei Y P. Interaction between two Wu's solitons[J]. Europhys Lett,1993,23:335-340. [14] ZHOU Xian-chu, TANG Shi-min, QIN Su-di. The stability of a standing soliton[A]. In: CHIEN Wei-zang, GUO Zhong-heng, GUO You-zhong Eds. Proc 2nd Int Conf of Nonlinear Mech[C]. Beijing: Peking University Press,1993,455-458.
计量
- 文章访问数: 2494
- HTML全文浏览量: 104
- PDF下载量: 554
- 被引次数: 0