Penalty Finite Element Method for Nonlinear Dynamic Response of Viscous Fluid-Saturated Biphasic Porous Media
-
摘要: 采用基于混合物理论的多孔介质模型,给出粘性流体饱和两相多孔介质非线性动力问题的控制场方程以及相应边值和初值问题的提法,用Galerkin加权残值法导出罚有限元公式,并给出该非线性方程组的迭代求解方法。考虑了体积分数和渗透率与变形相关的情况。用编制的有限元程序计算分析了一维多孔柱体在脉冲载荷作用下的瞬态响应,数值结果表明文中方法正确有效。Abstract: The governing equations as well as boundary and initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphasic porous medium model,based on mixture theory,are presented.With Galerkin weighted residual method the corresponding nonlinear dynamic penalty finite element equation,in which the dependencies of volume fraction and permeation coefficients on deformation are included,is obtained.The iteration solution method of the nonlinear system equation is also discussed.As a numerical example,the dynamic response of a porous medium column under impulsive loading action is analyzed with the developed finite element program.The numerical results demonstrate the efficiency and correctness of the method.
-
Key words:
- porous media /
- viscous fluid /
- dynamic response /
- finite element method
-
[1] de Boer R. 多孔介质理论发展史上的重要成果[M]. 刘占芳,严波译. 重庆:重庆大学出版社,1995. [2] Prevost H. Mechanics of continuous porous media[J]. In ternat J Engrg Sci,1980,18(6):787-800. [3] Mow V C, Kuei S C, Lai W M, et al, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments[J]. J Biomech Eng,1980,102(1):73-84. [4] de Boer R, Ehlers R, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media[J]. Arch Appl Mech,199 3,63:59-72. [5] de Boer R, Liu Z. Plane waves in a semi-infinite fluid-saturated porous medium[J]. Transport in Porous Media,1994,16:147-173. [6] de Boer R, Liu Z. Propagation of acceleration waves in incompressible liquid-saturated porous solids[J]. Transport in Porous Media,1995,21:163-173. [7] 严波,刘占芳,张湘伟. 流体饱和多孔介质中波传播问题的有限元分析[J]. 应用数学和力学,1999,20(12):1235-1244. [8] 严波,刘占芳,张湘伟. 流体饱和两相多孔介质拟静态问题的有限元方法[J]. 应用力学学报,2000,17(1):91-96. [9] 严波,刘占芳,张湘伟. 两相多孔介质拟静态问题的一种有限元解法[J]. 重庆大学学报,2000,23(1):41-44. [10] Lai W M, Mow V C. Drag-induced compression of articular cartilage during a permeation experiment[J]. Biorheology,1980,17 (1-2):111-123.
计量
- 文章访问数: 2778
- HTML全文浏览量: 156
- PDF下载量: 751
- 被引次数: 0