留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性粘弹性柱的稳定性和混沌运动

陈立群 程昌钧

陈立群, 程昌钧. 非线性粘弹性柱的稳定性和混沌运动[J]. 应用数学和力学, 2000, 21(9): 890-896.
引用本文: 陈立群, 程昌钧. 非线性粘弹性柱的稳定性和混沌运动[J]. 应用数学和力学, 2000, 21(9): 890-896.
CHEN Li-qun, CHENG Chang-jun. Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material[J]. Applied Mathematics and Mechanics, 2000, 21(9): 890-896.
Citation: CHEN Li-qun, CHENG Chang-jun. Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material[J]. Applied Mathematics and Mechanics, 2000, 21(9): 890-896.

非线性粘弹性柱的稳定性和混沌运动

基金项目: 国家自然科学基金资助资助(19727027);中国博士后科学基金资助;上海科技发展基金资助(98JC14032;98SHB1417)
详细信息
    作者简介:

    陈立群(1963- ),上海市人,博士,教授;程昌钧(1937- ),女,重庆市人,教授,博导.研究方向:非线性固体力学,已发表论文100余篇;多次获得省部级以上各种奖励,1998年获教育部科技进步(甲类)一等奖.

  • 中图分类号: O322

Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material

  • 摘要: 研究了受轴向周期力作用的各向同性简支柱的动力学稳定性。假定粘弹性材料满足Lea-derman非线性本构关系。导出运动方程为非线性偏微分-积分方程,并利用Galerkin方法简化为非线性微分-积分方程。应用平均法进行了稳定性分析,并用数值结果进行验证。数值结果还表明系统可能存在混沌运动。
  • [1] Matyash V I. Dynamic stability of hinged viscoelastic bar[J]. Mech Poly,1964,2(3):293-300.
    [2] Stevens K K. On the parametric excitation of a viscoelastic column[J]. AIAA J,1966,12(10):2111-2116.
    [3] Szyskowski W, Gluckner P G. The stability of viscoelastic perfect columns: a dynamic approach[J]. Int J Solids Struct,1985,6(4):545-559.
    [4] Gluckner P G, Szyskowski W. On the stability of column made of time dependent materials[J]. Encyc Civ Eng Prac Tech,1987,23(4):577-626.
    [5] Cederbaum G, Mond M. Stability properties of a viscoelastic column under a periodic force[J]. J Appl Mech,1992,59(1):16-19.
    [6] Suire G, Cederbaum G. Elastica type dynamic stability analysis of viscoelastic columns[J]. Arch Appl Mech,1994,64(3):307-316.
    [7] Smart J, Williams J G. A comparison of single integral non-linear viscoelasticity theories[J]. J Mech Phys Solids,1972,20(2):313-324.
    [8] Leaderman H. Large longitudinal retareded elastic deformation of rubberlike network polymers[J]. Polymer Trans Soc Rheol,1962,6(4):361-382.
    [9] Nayfef A H, Mook D T. Nonlinear Oscillations[M]. New York: Wiley,1979.
    [10] Sanders J A, Verhulst F. Averaging Methods in Nonlinear Dynamical Systems[M]. Berlin: Springer-Verlag,1985.
    [11] Touati D, Cederbaum G. Dynamic stability of nonlinear viscoelastic plates[J]. Int J Solids Struct,1994,31(18):2367-2376.
    [12] Suire G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear(elastica)bars under harmonic excitations[J]. Int J Mech Sci,1995,37(5):753-772.
    [13] Touati D, Cederbaum G. Influence of large deflections on the dynamic stability of nonlinear viscoelastic plates[J]. Acta Mech,1995,113(2):215-231.
    [14] Argyris J. Chaotic vibrations of a nonlinear viscoelastic beam[J]. Chaos Solitons, Fractals,1996,7(1):151-163.
    [15] ZHANG Neng-hui, CHENG Chang-jun. Chaos behavior of viscoelastic plates in supersonic flow[A]. In: CHIEN Wei-zang, CHENG Chang-jun, DAI Shi-qiang, LIU Yu-lu, Eds.Proc 3rd Inter Conf Nonlinear Mech[C]. Shanghai: Shanghai University Press,1998,432-436.
    [16] ZHU Yan-yan, ZHANG Neng-hui, Miura F. Dynamical behavior of viscoelastic rectangular plates[A]. In: CHIEN Wei-zang, CHENG Chang-jun, DAI Shi-qiang, LIU Yu-lu, Eds. Proc 3rd Inter Conf Nonlinear Mech[C]. Shanghai: Shanghai University Press,1998,445-450.
    [17] 程昌钧,张能辉. 粘弹性矩形板的混沌和超混沌行为[J]. 力学学报,1998,30(6):690-699.
    [18] 陈立群,程昌钧. 用输出变量反馈线性化方法控制粘弹性板的混沌振动[J]. 应用数学和力学,1999,20(12):1229-1234.
  • 加载中
计量
  • 文章访问数:  2812
  • HTML全文浏览量:  181
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-06-25
  • 修回日期:  2000-05-25
  • 刊出日期:  2000-09-15

目录

    /

    返回文章
    返回