Dynamical Behavior of Nonlinear Viscoelastic Beams
-
摘要: 建立了描述受周期荷载作用的均匀粘弹性梁动力学行为的非线性偏微分-积分方程,梁的材料满足Leaderman非线性本构关系,对于两端简支的情形用Galerkin方法进行了2阶截断后,简化为常微分-积分方程,进一步简化为便于进行数值实验的常微分方程,最后用数值方法比较了1阶和2阶截断系统的动力学行为。
-
关键词:
- 粘弹性梁 /
- 运动微分方程 /
- Leaderman关系 /
- Galerkin方法
Abstract: The integro-partial-differential equation that governs the dynamical behavior of homogeneous viscoelastic beams was established.The material of the beams obeys the Leaderman nonlinear constitutive relation.In the case of two simply supported ends,the mathematical model was simplified into an integro-differential equation after a 2-order truncation by the Galerkin method.Then the equation is further reduced to an ordinary differential equation which is convenient to carry out numerical experiments.Finally,the dynamical behavior of 1-order and 2-order truncation are numerically compared. -
[1] 陈立群,程昌钧. 基于Galerkin截断的粘弹性结构动力学行为研究综述[J]. 自然杂志,1999,21(1):1-4. [2] Wojciech S, Klosowicz M, Nadolski W. Nonlinear vibrations of a simply supported viscoelastic inextensible beam and comparison of four methods[J]. Acta Mech,1990,85(1):43-54. [3] Moon F C, Holmes P J. A magnetoelastic strange attractor[J]. J Sound Vib,1979,65(2):285-296. [4] Abhyankar N S, Hall E K, Hanagud S V. Chaotic vibrations of beams: numerical solution of partial differential equation[J]. J Appl Mech,1993,60(1):167-174. [5] Suire, G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear(elastica) bars under harmonic excitations[J]. Int J Mech Sci,1995,37(5):753-772. [6] Argyris J. Chaotic vibrations of a nonlinear viscoelastic beam[J]. Chaos Solitons Fractals,1996,7(1):151-163. [7] Leaderman H. Large longitudinal retarded elastic deformation of rubberlike network polymers[J]. Polymer Trans Soc Rheol,1962,6(4):361-382. [8] Smart J, Williams J G. A comparison of single integral non-linear viscoelesticity theories[J]. J Mech Phys Solids,1972,20(2):313-324. [9] Nayfef A H, Mook D T. Nonlinear Oscillations[M]. New York: Wiley 1979. [10] Potapov V D, Marasanov A Y. The invstigation of the stability of elastic and viscoelastic rods under a stochastic excitation[J]. Int J Solids Struct,1997,34(9):1367-1377.
计量
- 文章访问数: 2674
- HTML全文浏览量: 140
- PDF下载量: 1211
- 被引次数: 0