A Class of Two-Level Explicit Difference Schemes for Solving Three Dimensional Heat Conduction Equation
-
摘要: 提出了一族三维热传导方程的两层显式差分格式,当截断误差阶为O(Δt+(Δx)2)时,稳定性条件为网格比r=Δt/(Δx)2=Δt/(Δy)2=Δt/(Δz)2≤1/2,优于其他显式差分格式。而当截断误差阶为O((Δt)2+(Δx)4)时,稳定性条件为r≤1/6,包含了已有的结果。Abstract: A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation.When the order of truncation error is O(Δt+(Δx)2),the stability condition is mesh ratio r=Δt/(Δx)2=Δt/(Δy)2=Δt/(Δz)2≤1/2, which is better than that of a all the other explicit difference schemes.And when the order of truncation error is O((Δt)2+(Δx)4),the stability condition is r≤1/6,which contains the known results.
-
[1] 南京大学编. 偏微分方程数值解法[M]. 北京:科学出版社,1979. [2] Douglas J, Gum E. Two-high-order correct difference analogues for the equation of multi-dimensional heat flow[J]. Math Comput,1963,17(81):71-80. [3] 曾文平. 三维抛物型方程的一个新的高精度显式差分格式[J]. 工科数学,1992,8(4):20-25. [4] 曾文平. 解三维抛物型方程的高精度显式格式[J]. 华侨大学学报,1995,16(2):128-133. [5] Richtmyer R D, Morton K W. Difference Methods for Initial-Value Problems[M]. Second Edition. New York: New Jersey,1967.
计量
- 文章访问数: 2697
- HTML全文浏览量: 154
- PDF下载量: 1055
- 被引次数: 0