Bianalytic Functions, Biharmonic Functions and Elastic Problems in the Plane
-
摘要: 通过考虑双解析函数和双调和函数的关系,对单连通区域上平面弹性问题中只有重力体力作用的应力函数建立了唯一性和存在性结果;并对单位圆区域得到了类似于Poisson公式解的积分表示式。Abstract: Let the elastic body only be acted by gravity. By investigating the relations of bianalytic functions and biharmonic functions, the uniqueness and existence of the stress functions (Airy functions) are established in planar simple connected region. Moreover, the integral representation formula of the stress function in the unit disk of the plane is obtained.
-
[1] 路见可.平面弹性复方法[M].武汉;武汉大学出版社,1986,35-79. [2] 铁摩辛柯,古地尔.弹性理论[M].徐芝纶译.北京;高等教育出版社,1990,65-132. [3] 维库阿IN.广义解析函数[M].北京大学数力组译.北京;人民教育出版社,1960,45-86. [4] 赵桢.双解析函数、复调和函数和其边值问题[J].北京师范大学学报,1995,31(2);175-179. [5] ZHAO Zhen.Bianalytic functions and its applications[A].In:Proceedings of the Second Asian Mathematical Conference[C].Thailand,1995. [6] ZHAO Zhen.Schwarz's problem for some complex partial differential equations of second order[J].Beijing Mathematics,1996,2(1);131-137. [7] Ahlfors Lars V.Complex Analysis[M].2nd Edition.New York:McGraw-Hill Book Company,1973,236-285.
计量
- 文章访问数: 3366
- HTML全文浏览量: 127
- PDF下载量: 1763
- 被引次数: 0