The Complementary Property of LindelLf’s Work and Chaplygin’s Work
-
摘要: 运用Vakonomic模型导出LindelLf方程,表明LindelLf的工作与Vakonomic模型相吻合;运用Chetaev模型导出Chaplygin方程,表明Chaplygin的工作与Chetaev模型相吻合。在此基础上,通过改进Chaplygin方程和LindelLf方程的表示形式,实现了从LindelLf方程向Chaplygin方程的合理过渡和从Chaplygin方程向LindelLf方程的合理的过渡。最后,给出一个典型实例。结果表明,正如Vakonomic模型与Chetaev模型是互补的一样,LindelLf的工作与Chaplygin的工作也是互补的。
-
关键词:
- 非完整系统 /
- Chaplygin方程 /
- LindelLf方程 /
- Vakonomic模型 /
- Chetaev模型
Abstract: LindelLf's equation is derived by using the Vakonomic model,which shows that LindelLf's work coincides with Vakonomic model. Chaplygin's equation is derived by using Chetaev's model, which shows that Chaplygin's work coincides with Chetaev's model. On basis of these, by improving the expressions of Chaplygin's equation and LindelLf's equation, the reasonable transition from Chaplygin's equation to LindelLf's equation is realized, the reasonable transition from LindelLf's equation to Chaplygin's equation is realized too. Finally, a typical example is given. The work of this paper shows that, just as the Vakonomic model and Chetaev's model are complementary to each other, LindelLf's work and Chaplygin's work are complementary to each other too. -
[1] Чаплыгин С А.Исследования по Динамике Неголономных Систем[M].Москва;Гостехиздат,1949. [2] Воронец А С.Об уравнениях движения для неголономных систем[J].Матем с б,1901,22(4);659-680. [3] Новоселов В С.Расширенные уравнения движения нелинейных неголономных систем[J].Механика уи заб ЛГУ,1957,21(7);53-62. [4] 梅凤翔.非完整系统力学基础[M].北京;北京工业学院出版社,1985. [5] 陈滨.状态空间非线性约束的完整性与非完整性[J].中国科学,1993,23(8);836-846. [6] 梁立孚,石志飞.非完整约束系统中广义位移变分的选值域问题[J].固体力学学报,1993,14(3);189-194. [7] 郭仲衡.一类非完整力学问题的合理解[J].中国科学,1994,24(5);485-497. [8] 梅凤翔.非完整系统的自由运动与非完整性的消失[J].力学学报,1994,26(4);470-476. [9] Pars L A.An Introduction to the Calculus of Variations[M].London:Heinemann,1962. [10] Rosonberg R M.Analytical Dynamics of Discrete Systems[M].New York:Pleum Press,1977. [11] Greenwood D T.Classical Dynamics[M].Englewood Cliffs, N J;Prentice-Hall, Inc,07632,1997. [12] 黄昭度,纪辉玉.分析力学[M].北京;清华大学出版社,1985. [13] 陈滨.分析动力学[M].北京;北京大学出版社,1987.
计量
- 文章访问数: 2637
- HTML全文浏览量: 160
- PDF下载量: 610
- 被引次数: 0