Pseudo-Division Algorithm for Matrix Multivariable Polynomial and Its Application
-
摘要: 给出矩阵多元多项式的带余除法,从而用微分代数的观点,得到把一类微分方程(组)化为无穷维Hamilton系统的充要条件及其具体无穷维Hamilton系统形式。再把此方法和吴方法相结合获得构造一类微分方程(组)的通解的新方法。几个例子表明这些方法都很有效的。
-
关键词:
- 矩阵多元多项式 /
- 无穷维Hamilton系统 /
- 吴方法 /
- 通解
Abstract: Pseudo-division algorithm for matrix multivariable polynomial are given, thereby with the view of differential algebra, the sufficient and necessary conditions for transforming a class of partial differential equations into infinite dimensional Hamiltonian system andits concrete form are obtained. Then by combining this method with Wu's method, a new method of constructing general solution of a class of mechanical equationsis got, which several examples show very effective. -
[1] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社,1995. [2] 郑宇,张鸿庆. 固体力学中的Hamilton正则表示[J]. 力学学报,1996,28(1):119~125. [3] 阿拉坦仓,张鸿庆,钟万勰. 一类偏微分方程的无穷维Hamilton正则表示[J]. 力学学报,1999,31(3):347~357. [4] Santilli R M. Foundations of Theoretical Mechanics[M]. New York: Springer-Verlag,1978. [5] Olver P J. Applications of Lie Groups to Differential Equations(GTM,Vol.107)[M]. New York: Springer-Verlag,1986. [6] 唐立民,褚致中,邹贵平等. 混合状态Hamilton元的半解析解和叠层板的计算[J]. 计算结构力学及其应用,1992,9(4):347~360. [7] 吴文俊. 几何定理机器证明[J]. 自然科学进展-国家重点实验室通讯,1992,1:1~14. [8] 石赫. 吴方法系列讲座[M]. 北京:中国科学院系统所,1992. [9] 钟万勰. 分离变量法与哈密尔顿体系[J]. 计算结构力学及其应用,1991,8(3):229~240. [10] Timoshenko S P, Goodier J N. Theory of Elasticity[M]. 3rd ed. New York: McCraw-Hill,1970. [11] 张鸿庆,阿拉坦仓,钟万勰. Hamilton体系与辛正交系的完备性[J]. 应用数学和力学,1997,18(3):217~221.
计量
- 文章访问数: 3540
- HTML全文浏览量: 116
- PDF下载量: 918
- 被引次数: 0