Periodicity and Strict Oscillation for Generalized Lyness Equations
-
摘要: 研究了一般的Lyness方程 其中a、b∈[0,∞)且a+b>0,初值x-1、x0为任意正数。得到了一些新的结果;方程(*)解的周期性的一个必要充分条件;方程(*)的所有解严格振动的充分条件。作为应用,解决了G.Ladas提出的一个公开问题。
-
关键词:
- 一般Lyness方程 /
- 周期性 /
- 严格振动性 /
- 公开问题
Abstract: A generalized Lyness equation is investigated as follows where a,b∈[0,∞) with a+b>0 and where the initial values x-1,x0 are arbitrary positive numbers.Some new results,mainly a necessary and sufficient condition for the periodicity of the solutions of Eq.(*) and a sufficient condition for the strict oscillation of all solutions of Eq(*),are obtained.As an application,the results solve an open problem presented by G.Ladas.-
Key words:
- generalized Lyness equation /
- periodicity /
- strict oscillation /
- open problem
-
[1] Ladas G.Open problems and conjectures[A].In:Proceedings of the First International Conference on Difference Equations[C].Basel:Gordon and Breach Science Publishers,1994,337~349. [2] Grove E A,Janowski E J,Kent C M,et al.On the rational recursive sequence xn+1=(αxn+β)/[(γxn+δ)xn-1] [J].Comm Appl Nonlinear Anal,1994,1(1):61~72. [3] 李先义,肖功福,唐衡生,等.关于Ladas G的一个公开问题[J].中南工学院学报,1997,11(1):26~31. [4] Ladas G.Open problems and conjectures[J].J Diff Equ Appl,1995,1(1):1~3. [5] Li Xianyi,Tang Hengsheng,Liu Yachun,et al.A conjecture by G Ladas[J].Applied Mathematics a Journal of Chinese University,Ser B,1998,13(1):39~44. [6] Kocic V L,Ladas G.Global Behavior of Nonlinear Difference Equations of Highe Order[M].Dordrecht:Kluwer Academic Publishers,1993.
计量
- 文章访问数: 2507
- HTML全文浏览量: 111
- PDF下载量: 467
- 被引次数: 0