A Note on Bifurcations of u″+μ(u-uk)=0(4≤k∈Z+)
-
摘要: 讨论了一类反应扩散方程u"+μ(u-uk)=0,u(0)=u(π)=0 (4≤k∈Z+,μ为参数)的分叉现象。运用所谓基于李雅普诺夫-施密特约化的奇异理论方法,得到满意的结果。
-
关键词:
- 李雅普诺夫-施密特约化 /
- 奇异理论 /
- 分叉
Abstract: Bifurcations of one kind of reaction-diffusion equations, u″+μ(u-uk)=0(μ is a parameter,4≤k∈Z+),with boundary value condition u(0)=u(π)=0 are discussed. By means of singularity theory based on the method of Liapunov-Schmidt reduction, satisfactory results can be acquired.-
Key words:
- Liapunov-Schmidt reduction /
- singularity theory /
- bifurcation
-
[1] Fife P C.Mathematical Aspects of Reaction and Diffusing Systems[M].Lecture Notes in Biomathematics,Berlin/Heidelberg/New York:Springer-Verlag,1979. [2] 叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,1994. [3] Chow S N, Hale J K.Methods of Bifurcation Theory[M].New York:Springer-Verlag,1982. [4] Golubitsky M, Schaeffer D G.Singularities and Groups in Bifurcation Theory[M].New York:Springer-Verlag,1985. [5] 陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995. [6] 唐云.对称性分岔理论基础[M].北京:科学出版社,1998.
计量
- 文章访问数: 2739
- HTML全文浏览量: 176
- PDF下载量: 510
- 被引次数: 0