Mathematical Theory of k Multiplier
-
摘要: 在杨文熊提出的幂单位向量的基础上,推广其为k乘子的数学理论并由此建立了一门新的数学分支。推广的k乘子还涉及到它的负整数幂。列举了由k乘子组成的复合变数及其函数都能满足由杨文熊在“幂向量,复合向量数及其函数理论”中导出的各种条件、定理、积分以及方程等。k乘子理论将进一步应用于建立粒子超光速理论以及自然的波粒二象性运动的研究。Abstract: On the power unit vector presented by Yang Wenxiong, it for the mathematical theory of k multiplier is extended to create a new mathematical branch. The extended k multiplier is yet to concern the negative powers. Enumerating the combinatorial variaties and its functions can satisfy the various conditions, formulas, integrations, and equations etc. derived by Yang Wenxiong. The theory of k multiplier will be applied further to establish the theory of supperlight of a particle and its motion with the natural wave-particle duality etc.
-
Key words:
- power unit vector /
- k multiplier /
- hyperbolic function /
- hyperbolic equation
-
[1] 杨文熊,幂向量.复合向量数及其函数理论[J].应用数学和力学,1996,17(2):133~138. [2] 杨文熊.广义非线性、非定常力学理论及在粒子物理学中的应用[J].应用数学和力学,1995,16(1):23~32. [3] 杨文熊,高速运动粒子质量的守恒性[J].应用数学和力学,1998,19(8):725~729. [4] 杨文熊,马波.地球运动的超非线性分析[J].西北地震学报,1997,19(4):98~100. [5] 徐玉相.双曲线函数[M].上海:商务印书馆,1957. [6] 阎喜杰.双曲线函数论[M].上海:科学技术出版社,1957,101~158.
计量
- 文章访问数: 1938
- HTML全文浏览量: 110
- PDF下载量: 444
- 被引次数: 0