The Initial Value Problems of First Order Impulsive Differential Equations in Banach Spaces
-
摘要: 利用单调迭代方法,在Banach空间中研究了更为一般的一阶脉冲微分方程的初值问题的最小最大拟解的存在性及迭代逼近程序.Abstract: In this paper,by using of monotone iterative technique,the existence and iterative approximation of the minimax quasi-solutions of the initial value problems for more general first order impulsive differential equations in Banach spaces are investigated.
-
[1] 张石生,王凡.关于一类一阶脉冲微分系统的初值问题[J].应用数学和力学,1998,19(4):279~284. [2] Guo Dajun,Liu Xinzhi.Extremal solutions of nonlinear impulsive integro-differential equation in Banach spaces[J].J Math Appl Anal,1993,177(2):538~552. [3] Erbe L H,Liu Xinzhi.Quasi-solutions of nonlinear impulsive equationsin abstractcones[J].ApplAnal,1989,34(2):231~250. [4] Deimling K.Nonlinear Functional Analysis[M].New York:Springer-Verlag,1985. [5] 郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,1989. [6] Guo Dajun.Extermal solutions of nonlinear Fredholm integral equation in Banach spaces[J].J North-Eastern Math,1991,7(4):416~423. [7] 刘立山.Banach 空间非线性混合型微分-积分方程的解[J].数学学报,1995,38(6):721~731.
计量
- 文章访问数: 2745
- HTML全文浏览量: 178
- PDF下载量: 603
- 被引次数: 0