The Existence and Uniqueness of Weak Solution of the Flow Between Two Concentric Rotating Spheres
-
摘要: 研究了两个同心旋转球间的轴对称不可压缩的粘性流动.该流动广泛应用于大气物理和地球物理等学科中,为了得到该流动的流函数-速度形式的Navier-Stokes方程的弱解的存在性和唯一性,首先发现了该方程中非线性项之间的关系,并引入一个有限维的辅助问题,通过紧性而得到了结论.
-
关键词:
- Navier-Stokes方程 /
- 流函数 /
- Gelerkin方法
Abstract: The unsteady axisymmetric incompressible flow between two concentric spheres was discussed in this paper.It is useful to most astrophysical,geophysical and engineering applications.In order to get the existence and uniqueness of weak solution of this flow with the stream-velocity form,firstly,the relations among the nonlinear terms in this equation is found; then,the existence is proved by an auxiliary semi-discrete scheme and a compactness argument.-
Key words:
- Navier-Stokes equations /
- stream function /
- Galerkin method
-
[1] Khlebutin G N.Stability of fluid motion between a rotating and a stationary concentric sphere[J].Fluid Dynamics,1986,3:31~34. [2] Marcus PS,Tuckerman L S.Simulation of flow between two concentric rotating spheres,Part1,Steady states[J].J Fluid Mech,1987,185:1~30. [3] Marcus PS,Tuckerman L S.Simulation of flow between two concentric rotating spheres,Part2,Transition[J].J Fluid Mech,1987,185:31~66. [4] Teman R.Navier-Stokes Equation[M].Amsterdam,New York:North-Holland,1984. [5] 李开泰,马逸尘.数理方程Hilbert空间方法[M].西安:西安交通大学出版社,1992. [6] Glowinski R.Numerical Methods for Nonlinear Variational Problems[M].New York:Springer,1984. [7] Tuckerman L S.Formation of Taylor vortices in spherical conette flow[D].Ph.D.Thesis.Massachusetts:Massachusetts Institute of Technology,1983.
计量
- 文章访问数: 2094
- HTML全文浏览量: 97
- PDF下载量: 584
- 被引次数: 0