A Mixture Differential Quadrature Method for Solving Two-Dimensional Incompressible Navier-Stokes Equations
-
摘要: 微分求积法(DQM)能以较少的网格点求得微分方程的高精度数值解,但采用单纯的微分求积法求解二维不可压缩Navier-Stokes方程时,只能对低雷诺数流动获得较好的数值解,当雷诺数较高时会导致数值解不收敛。为此,提出了一种微分求积法与迎风差分法混合求解二维不可压缩Navier-Stokes方程的预估-校正数值格式,用伪时间相关算法以较少的网格点获得了较高雷诺数流动的数值解。作为算例,对1:1和1:2驱动方腔内的流动进行了计算,得到了较好的数值结果。
-
关键词:
- 数值方法 /
- 微分求积法 /
- Navier-Stokes方程
Abstract: Differential quadrature method(DQM)is able to obtain highly accurate numerical solutions of differential equations just using a few grid points.But using purely differential quadrature method, good numerical solutions of two-dimensional incompressible Navier-Stokes equations can be obtained only for low Reynolds number flow and numerical solutions will not be convergent for high Reynolds number flow.For this reason,in this paper a combinative predicting-correcting numerical scheme for solving two-dimensional incompressible Navier-Stokes equations is presented by mixing upwind difference method into differential quadrature one.Using this scheme and pseudo-time-dependent algorithm,numerical solutions of high Reynolds number flow are obtained with only a few grid points.For example,1:1 and 1:2 driven cavity flows are calculated and good numerical solutions are obtained. -
[1] Bellman R, Casti J. Differential quadrature and long-term integration[J]. J Math Anal Appl,1971,34(2):235~238. [2] Bellman R, Kashef B G, Casti J. Differential quadrature: a technique for the rapid solution of non~linear partial differential equations[J]. J Comput Phys,1972,10(1):40~52. [3] Bert C W, Malik M. Differential quadrature method in computational mechanics: a review[J]. Appl Mech Rev,1996,49(1):1~27. [4] Shu C, Richards B E. Application of generalized differential quadrature to solve two-dimentional incompressible Navier-Stokes equations[J]. Int J Numer Methods Fluids,1992,15(7):791~798. [5] Chu C, Richards B F. Parallel simulation of incompressible viscous flows by generalized differential quadrature[J]. Comput Syst Eng,1992,3(1-4):271~281. [6] Striz A G, Chen W L. Application of the differential quadrature method to the driven cavity problem[J]. Int J Non-Linear Mech,1994,29(5):665~670. [7] Chia U, Chia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J Comput Phys,1982,48(2):387~411. [8] Kawaguti M. Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity[J]. J Phys Soc Japan,1961,16(8):2307~2315. [9] Burggraf O R. Analytical and numerical studies of the structure of steady separated flow[J]. J Fluid Mech,1966,24(1):113~151. [10] Prosnak W J, Kosma Z J. On a new method for numerical solution of the Navier-Stokes equations[J]. Acta Mechanica,1991,89(1):45~63.
计量
- 文章访问数: 2631
- HTML全文浏览量: 196
- PDF下载量: 760
- 被引次数: 0