Qualitative Analysis for the Solution of Kuramoto-Sivashinsky Equation
-
摘要: 研究Kuramoto-Sivashinsky方程的两种初边值问题,运用Galerkin方法给出一系列先验估计结果,得到广义解和古典解的存在唯一性、正则性及某些条件下的渐近性质。
-
关键词:
- Kuramoto-Sivashinsky方程 /
- 初边值间题 /
- 广义解 /
- 古典解 /
- 渐近性质
Abstract: In this paper, two kinds of initial boundary value problems for Kuramoto-Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions. -
[1] Temam R.Infinite-dimensional dynamical systems in mechanics and physics[A].Appl Math Sciences[M],Vol 68.New York:Springer,1988. [2] Kukavica Igor.On the behavior of solutions of the Kuramoto-Sivashinsky equation for negative time[J].J Math Anal Appl,1992,166(2):601~606. [3] Sell G R.Global attractors for the three-dimensional Navier-stokes equation[J].J of Dynamics and Differential Equation,1996,8(1):1~33. [4] Sell G R,You T.Dynamics of Evolutionary Equation[Z].Lecture Notes,1995. [5] Kwak M.Finite dimensional inertial forms for the 2D Navier-Stokes equation[J].Indian J Math,1992,41(3):927~981. [6] Cohen D S,Murray J D.A generalized diffusion model for growth and dispersal in population[J].J Math Biol,1981,12(2):237~249. [7] Liu B P,Pao C V.Integral representation of generalized diffusion model in popuation problems[J].J of Integral Eqs,1984,5(2):175~185. [8] Chen G W.Initial value problem for a class of nonlinear parabolic systems of fourth-order[J].Acta Math Scientia,1991,11(3):393~400. [9] Zhou Y L,Fu H Y.The nonlinear hyperbolic systems of higher order of generalized Sine-Gordon type,Acta Math,Sinica,1983,26(2):234~249. [10] 康盛亮,桂子鹏.数学物理方程中的现代分析方法[M].上海:同济大学出版社,1991. [11] 张石生.积分方程[M].重庆:重庆出版社,1988.
计量
- 文章访问数: 2734
- HTML全文浏览量: 154
- PDF下载量: 819
- 被引次数: 0