Quasi-Weak Convergence with Applications in Ordered Banach Space
-
摘要: 在有序Banach空间中引入拟弱收敛,并表明拟弱收敛弱于弱收敛。由此,在非紧性条件下,获得了非连续增算子的不动点,并将它应用于Hammerstein型非线性积分方程。
-
关键词:
- 有序Banach空间 /
- 分离性质 /
- 拟弱收敛 /
- 不动点
Abstract: In the paper quasi-weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of continuity and compactness in the sense of norm and weak compactness and is applied to the Hammerstein nonlinear intergal equation.-
Key words:
- ordered Banach space /
- separated property /
- quasi-weak convergence /
- fixed points
-
[1] Amann H.Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J].SIAM Review,1976,18(4):620~709. [2] Ladde G S,Lakshmikantham V,Vatsala A S.Monotone Iterative Techniques for Nonlinear Differential Equations[M].London:Pitman,1985. [3] Deimling K.Nonlinear Function Analysis[M].Berlin,Heidelherg:Springer-Verlag Heidelherg,1985. [4] 孙径先,非连续的增算子的不动点定理及其对含间断项的非线性积分方程的应用[J].数学学报,1988,31(1):101~107. [5] Guo Dajun,Lakshmikanthan V.Coupled fixed points of nonlinear operators with applications[J].Nonlinear Analysis Theory Methods & Applications,1987,11(5):623~632. [6] 杨荣先,杨光崇.积空间中的不动点及其应用[J].工程数学学报,1996,13(2):27~32. [7] 夏道行,等.实变函数与泛函分析(上册)[M].北京:人民教育出版社,1978. [8] 郑维行,等.实变函数与泛函分析概要(下册)[M].北京:人民教育出版社,1980. [9] 郭大钧.非线性泛函分析[M].济南:山东科技出版,1985.
计量
- 文章访问数: 2632
- HTML全文浏览量: 107
- PDF下载量: 729
- 被引次数: 0