On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅱ)
-
摘要: 对于三维中心流形上实噪声参激的一类余维2分叉系统,为使模型更具有一般性,取系统的参激实噪声为一线性滤波系统的输出-零均值的平稳高斯扩散过程,满足细致平衡条件.并在此基础上首次使用Arnold的渐近方法以及Fokker-Planck算子的特征谱展式,求解不变测度以及最大的Lyapunov指数的渐近展式.Abstract: Foraco-dimension two bifurcation system on a three-dimensional central manifold, which is parametrically excited by a real noise, a rather general model is obtained by assuming that the real noise is an output of a linear filter system-a zeromean stationary Gaussian diffusion process which satisfies detailed balance condition. By means of the asymptotic analysis approach given by L. Arnold and the expression of the eigenvalue spectrum of Fokker-Planck operator, the asymptotic expansions of invariant measure and maximal Lyapunov exponent for the relevant system are obtained.
-
[1] Ito K,McKean H P,Jr.Diffusion Processes and Their Sample Paths[M].New York:Springer-Verlag,1965. [2] Karlin S,Taylor H M.A Second Course in Stochastic Processes[M].New York:Academic Press,1981. [3] 刘先斌.随机力学系统的分叉行为与变分方法研究[D].博士学位论文.成都:西南交通大学,1995. [4] 刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究[J].力学进展,1996,26(4):437~452. [5] 刘先斌,陈虬,孙训方.白噪声参激一类余维2分岔系统研究[J].力学学报,1997,29(5):563~572. [6] 朱位秋.随机振动[M].北京:科学出版社,1992. [7] Lin Y K,Cai G Q.Stochastic stability of nonlinear systems[J].Int J Nonlinear Mech,1994,29(4):539~555. [8] Ariaratnam S T, Xie W C.Lyapunov exponents and stochastic stability of two-dimensional parametrically excited random systems[J].ASME J Appl Mech,1993,60(5):677~682. [9] Arnold L,Wihstutz V.Lyapunov Exponents[M].Lecture Notes in Mathematics,1186,Berlin:Springer-Verlag,1986. [10] Arnold L,Papanicolaou G,Wihstutz V.Asympototic analysis of the Lyapunov exponents and rotation numbers of the random oscilltor and applications[J].SIAM J Appl Math,1986,46(3):427~450. [11] 刘先斌,陈大鹏,陈虬.实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)[J].应用数学和力学,1999,20(9):902~913.
计量
- 文章访问数: 2332
- HTML全文浏览量: 139
- PDF下载量: 629
- 被引次数: 0