Chaotic Ocillation of a Nonlinear Power System
-
摘要: 分析了一个非线性三参数电力系统振荡的异宿分枝,给出Melnikov函数的留数计算法,并获得电力系统发生混沌振荡的锥性参数区域和带形参数区域,为大偏差状态下保障电力系统稳定运行提供了理论依据和计算方法.Abstract: For a nonlinear power transmission system, the residue calculus method is introduced and applied to study its heteroclinic bifurcation. There a cone region and a strip region of parameters are obtained in which the power transmission system displays chaotic ocillation. This gives a theoretic analysis and a computational method for the purpose to control the nonlinear system with deviation stably running.
-
Key words:
- power transmission system /
- nonlinear /
- heteroclinic bifurcation /
- chaotic oscillation
-
[1] 卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993. [2] Yu Y N.Electric Power System Dynamics[M].New York:Academic Press,1983. [3] 张卫东,张伟年.一个非线性刚体转子振动模型[J].动力工程,1996,16(增刊):503~508. [4] Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems and Bifurcations of [5] Vector Fields[M].New York:Springer-Verlag,1983. [6] Zhang Weinian.Bifurcation of homoclinics in a nonlinear oscillation[J].Acta Math Sinica,New Series,1989,5(2):170~184. [7] 肖达川.线性与非线性电路[M].北京:科学出版社,1992. [8] Lu Qiang(卢强),Sun Yuanzhang(孙元章).Nonlinear stabilizing control of multimachine systems[J].IEEE Transactions on Power Systems,1989,4(1):236~241. [9] 卢强,孙元章,高景德.非线性系统几何结构的发展及其在电力系统中的应用[J].中国电机工程学报,1990,10(1),电工数学特刊,15~21. [10] 袁斌,孙启宏.应用分支理论分析电力系统中的复杂振荡现象[J].电网技术,1994,18(4):1~4. [11] 张强,刘九斌.电力系统振荡的混沌性态[J].南京电力高等专科学校学报,1995,7(1):14~18. [12] 庄圻泰,张南岳.复变函数[M].北京:北京大学出版社,1984.
计量
- 文章访问数: 2414
- HTML全文浏览量: 93
- PDF下载量: 924
- 被引次数: 0