The Study on the Chaotic Motion of a Nonlinear Dynamic System
-
摘要: 讨论了含二次和三次非线性项的受迫振动系统 -λ1T+λ2T2+λ3T3=ε(gcosωt-ε'T)的混沌运动,利用Melnikov函数法给出了发生混沌的临界条件,结合相平面轨迹、时程曲线和Poincaré映射判定系统是否发生混沌.
-
关键词:
- 混沌 /
- Melnikov函数法 /
- 相平面轨迹 /
- 时程曲线 /
- Poincaré映射
Abstract: In this paper the system of the forced vibration -λ1T+λ2T2+λ3T3=ε(gcosωt-ε'T) is discussed, which contains square and cubic items. The critical condition that the systementers chaotic states is given by the Melnikov method. By Poincarmap, phase portrait and time-displacement history diagram, whether the chaos occurs is determined.-
Key words:
- chaos /
- Melnikov method /
- Poincar map /
- phase portrait /
- time-displacement diagram
-
[1] Lee J Y,Symonds P S.Extended energy approach to chaotic elastic-plastic response to impulsive loading[J].Internat J Mech Sci,1992,34(2):139~157. [2] Moon F C,Shaw S W.Chaotic vibration of a beam with nonlinear boundary conditions[J].Non-Linear Mech,1983,18(6):230~240. [3] Baran D D.Mathematical models used in studying the chaotic vibration of buckled beams[J].Mechanics Research Communications,1994,21(2):189~196. [4] Holms P,Marsden J.A partial differential equation with infinitely many periodic orbits:chaotic oscillation of a forced beam[J].J Arch Rat Mech Anal,1981,76(2):135~165. [5] 韩强.几种结构的动力屈曲、分叉和混沌运动研究[D].(博士学位论文).太原:太原工业大学,1996.
计量
- 文章访问数: 2527
- HTML全文浏览量: 120
- PDF下载量: 703
- 被引次数: 0