Theory and Algorithm of Optimal Control Solution to Dynamic Systme Parameters Identification (Ⅱ) Stochastic System Parameters Identification and Application Example
-
摘要: 基于文(Ⅰ)(《应用数学和力学》,1998,20(2))的内容和随机最优控制理论,本文首先介绍了随机动力学系统参数辨识问题最优控制解的概念.然后讨论了建立参数辨识问题HJB方程的过程以及参数辨识的算法.最后给出了一个应用实例:解决动力学系统局部非线性参数辨识问题的方法.Abstract: Based on the contents of part(Ⅰ) and stochastic optimal control theory, the concept of optimal control solution to parameters identification of stochastic dynamic system is discussed at first. For the completeness of the theory developed in this paper and part (Ⅰ), then the procedure of es tablishing Hamilton-Jacobi-Bellman (HJB) equations of parameters identification problem is present ed. And then, parameters identification algorithm of stochastic dynamic system is introduced. At last, an application example-local nonlinear parameters identification of dynamic systemis presented.
-
Key words:
- dynamic system /
- parameters identification /
- optimal control /
- HJB equation
-
[1] 蔡金狮.动力学系统辨识与建模[M].北京:国防工业出版社,1991 [2] 黄光远,刘小军.数学物理反问题[M].济南:山东科技出版社,1993 [3] 王康宁.最优控制的数学理论[M].北京:国防工业出版社,1995 [4] 雍炯敏.动态规划与Hamilton-Jacobi-Bellman方程[M].上海:上海科技出版社,1992 [5] Stengel R F.Stochastic Optimal Control[M].New York:John Wiley & Sons,Inc,1986 [6] Bryson A E,Ho Yuchi.Applied Optimal Control[M].New York:Hemisphere Publishing Corporation,1975
计量
- 文章访问数: 2303
- HTML全文浏览量: 156
- PDF下载量: 753
- 被引次数: 0