Rational Finite Element Method for Elastic Bending of Reissner Plates
-
摘要: 本文在非协调元的修正泛函中引入满足系统微分方程的单元变形模式,提出了一种将解析方法与数值方法有机结合的理性有限元法。这种新的计算方案合乎单元的力学要求和结构的几何复杂性要求。据此所得的厚板弯曲四边形单元具有计算精度高、可对刚度矩阵精确积分等优点。
-
关键词:
- Reissner厚板 /
- 厚板弹性弯曲 /
- 理性有限元
Abstract: In this paper,some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements.And therefore the rational FEM,which is perfect combination of the analytic methods and numeric methods,has been presented.This new approach satisfies not only the mechanical requirement of the elements but also the geometric requirement of the complex structures.What's more the quadrilateral element obtained accordingly for the elastic bending of thick plates demonstrates such advantages as high precision for computation and availability of accurate integration for stiffness matrices. -
[1] 蒋炜.有限单元-放松边界条件法解弹性理论平面问题[J].力学学报,1981,13(3):236~247 [2] 钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1996,13(1):1~8 [3] 黄炎.弹性薄板理论[M].长沙:国防科技大学出版社,1992,31~39 [4] 孙卫明,杨光松.Reissner厚板弹性弯曲的一般解析解[J].应用数学和力学,1998,19(1):79~87 [5] 蒋炜.弹性理论平面问题中由应力函数积分位移分量的一般方法[J].上海力学,1980,1(1):23~37 [6] 钱伟长.广义变分原理[M].上海:知识出版社,1985,228~256 [7] 丁皓江,周卫宇,孙丽波.一种新型的平板弯曲单元[J].力学学报,1986,18(5):421~429 [8] 张福范.均布载荷下悬臂矩形板的弯曲[J].应用数学和力学,1980,1(3):349~362 [9] 吴良芝.结构有限元的修正解[J].固体力学学报,1981,2(4):457~467 [10] 浙江大学.平板分析中的有限元法译文集[C].1973:87~109 [11] 王家林.8点超参板壳单元的改进[J].吉林工业大学学报,1982,(1):1~11
计量
- 文章访问数: 2258
- HTML全文浏览量: 131
- PDF下载量: 800
- 被引次数: 0