On the Degree Theory for Multivalued(S+) Type Mappings
-
摘要: 本文的目的是推广张石生和陈玉清(多值(S)型映象度理论以及不动点定理)的结果.假设L是闭稠定线性极大单调映象,S是关于D(L)的(S+)型多值映象,我们建立具有形式F=L+S的多值映象的拓扑度.
-
关键词:
- 拓扑度多值映象存在性结果
Abstract: This paper is to generalize the results of Zhang and Chen[1].We constract a topological degree for a class of mappings of the form F=L+S where L is closed densety defined maximal monotone operator and S is a nonlinear multivalued map of class(S+) with respect to the domain of L.-
Key words:
- topological degree
-
[1] 张石生、陈玉清,多值(S)型映象度理论以及不动点定理,应用数学和力学,11,5(1990),441-454. [2] F.E.Browder,Degree theory for nonlinear mappings,Proc.Sympos.Pure.Muth.,45,1(1986),203-226. [3] J.Berkovits and V.Mustonen,Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems,Re.Mat.,7,12(1992),597-621. [4] 张恭庆,《临界点理论及其应用》,上海科学技术出版社(1986). [5] E.Zeidler,Nonlinear Functional Analysis and Its Applications,Ⅱ A and Ⅱ B,Springer,New York(1990).
计量
- 文章访问数: 2238
- HTML全文浏览量: 158
- PDF下载量: 681
- 被引次数: 0