留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同随机分布的相位随机化对实测数据影响的分析研究*

马军海 陈予恕 刘曾荣

马军海, 陈予恕, 刘曾荣. 不同随机分布的相位随机化对实测数据影响的分析研究*[J]. 应用数学和力学, 1998, 19(11): 954-864.
引用本文: 马军海, 陈予恕, 刘曾荣. 不同随机分布的相位随机化对实测数据影响的分析研究*[J]. 应用数学和力学, 1998, 19(11): 954-864.
Ma Junhai, Chen Yushu, Liu Zengrong. The Influence of the Different Distributed Phase-Randomized on the Experimental Data Obtained in Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(11): 954-864.
Citation: Ma Junhai, Chen Yushu, Liu Zengrong. The Influence of the Different Distributed Phase-Randomized on the Experimental Data Obtained in Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(11): 954-864.

不同随机分布的相位随机化对实测数据影响的分析研究*

基金项目: * 国家自然科学基金项目(19672043)
详细信息
  • 中图分类号: O175;O241

The Influence of the Different Distributed Phase-Randomized on the Experimental Data Obtained in Dynamic Analysis

  • 摘要: 本文对服从不同分布的随机数相位充分随机化后对动力系统实测数据生成的替代数据的影响做了分析研究,计算结果表明:不同分布的随机数相位充分随机化后对临界值无质的影响.这对相位随机化方法的可行性,实用性和广泛应用提供了理论依据,并对它对于实际问题的应用提供了具体的实施方法.
  • [1] S.Rombouts and R.Keunen,I nvestigation of nonlinear structure in multichannel EEG,Phys.Lett,A202(1995),352-358.
    [2] James Theiler,Spurious dimension from correlation algorit hms applied to limited time series data,Phys.Rev.,A34(1986),2427-2432.
    [3] 马军海、陈予恕、刘曾荣,动力系统实测数据的非线性混沌特性的判定,应用数学和力学,19(6)(1998),481-489.
    [4] Dean Prichard,The correlation dimension of differenced data,Phys.Lett,A191(1994),245-250.
    [5] Matthew B.Kennel,Method to distinguish possible chaos from colored noise and to determine em-bedding parameters,Phys.Rev.Lett,A46(1992),3111-3118.
    [6] P.E.Rapp and A.M.Albano,Filtered noise can mimic low-dimensional chaotic attractors,Phys.Rev.,E47(1993),2289)2297.
    [7] Dean Prichard,Generating surrogate data for time series with several simultaneously measured vari-ables,Phys.Rev.Lett,191(1994),230-245.
    [8] P.E.Rapp and A.M.Albano,Phase-randomized surrogates can produce spurious identifications of non-random structure,Phys,Lett,A192(1994),27-33.
    [9] Henry D.I.Abarbanel,Prediction in chaotic nonlinear systems methods for timesseries with broad-band Fourier spectra,Phys,B5(1991),1347-1375.
    [10] M.Casdagli and Alistair Mees,Modeling chaotic motions of a string from experimental data.Phys.Rev.,E54(1992),303-328.
    [11] P.E.Rapp and A.M.Albano,Predicting chaotic time series,Phys.Rev.,E47(1993),2289-2297.
    [12] J.L uis Cabrera and F.Javier,Numerical analysis of transient behavior in the discrete random Logistic equation with delay,Phys.Lett,A197(1995),19-24.
    [13] Eric J.Kost elich,Problems in estimating dynamics from data,Phys.,D58(1992),138-152.
    [14] S.J.Schiff and T.Chang,I nformation transport in temporal systems,Phys.Rev.Lett,A(1992),378-393.
    [15] Peter Grassberger,Finite sample corrections to entropy and dimension estimates,Phys.Lett,A125(1988),369-373.
    [16] James Theiler,Some comments on the correlation dimension of noise,Phys.Lett,A155(1991),480-493.
    [17] J.Timonen and H.Koskinen,An improved estimator of dimension and some comments on providing confidence intervals,Geophys.Res.Lett,20(1993),1527-1536.
    [18] D.Prichard and C.P.Price,Reconstructing attractors from scalar time series:a comparison of singular system and redundancy criteria,Geophys.Res.,20(1993),2817-2825.
  • 加载中
计量
  • 文章访问数:  2279
  • HTML全文浏览量:  74
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-01-20
  • 修回日期:  1998-04-10
  • 刊出日期:  1998-11-15

目录

    /

    返回文章
    返回