Wavelet Basis Analysis in Perturbed Periodic KdV Equation
-
Abstract: In the paper by using the spline wavelet basis to construct the approximate inertial manifold, we study the longtime behavior of pert urbed perodic KdV equation.
-
[1] R.Teman,In finite -Dimensional Dynamical system in Mechanics and Physics,Appl.Math.Soc.,V.68,Springer-Verlay,Berlin,New York(1988). [2] A.Debussche and M.Marion,On the constructure of famliies of approximate inertial manifolds,J.Diff.Egu.,100(1992),173-201. [3] O.Goubet,Construction on approximate inertial manfolds using wavelets,SIAM,J.Math.Ana l.,9(1992),1455-1481. [4] N.M.Ercolani,D.W.Mclaughlin and H.Roit ner,Attractors and transients for a perturbed periodic KdV equations: a nonlinear spectral analysis,J.Non li.Sci.,3(1993),477-539. [5] S.M.Sun and M.C.Shen,Exponential small estimate for a generalized solitary wave solution to the perturbed KdV equation,Non linear Analy.,23(4)(1994),545-564. [6] 田立新、徐振源,弱阻尼 KdV 方程长期动力学行为研究,应用数学和力学,18(10)(1997),953-958. [7] C.K.Chui,An Introduction to Wav elet,Academic Press,Inc.,USA(1992). [8] 田立新、卢殿臣、刘曾荣,弱阻尼KdV方程的小波Galerkin方法,《MMM—论文集》,上海大学出版社(1997).
计量
- 文章访问数: 2502
- HTML全文浏览量: 167
- PDF下载量: 685
- 被引次数: 0