Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial
-
摘要: 本文给出了高阶多元Euler数和多项式与高阶多元Bernouli数和多项式的定义,讨论了它们的一些重要性质,得到了高阶多元Euler多项式(数)和高阶多元Bernouli多项式(数)的关系式.
-
关键词:
- 高阶多元Euler数 /
- 高阶多元Euler多项式 /
- 高阶多元Bernoulli数 /
- 高阶多元Bernoulli多项式
Abstract: In this paper,the definitions of both higher-order multivariable Euler's numbers and polynomial,higher-order multivariable Bernoulli's numbers and polynomial are given and some of their important properties are expounded.As a resut,the mathematical relationship between higher-order multivariable Euler's polynomial (numbers) and higher-order multivariable Bernoulli's polynomial (numbers) are thus obtained. -
[1] 王竹溪、郭敦仁,《特殊函数概论》,科学出版社,北京 (1965),1-8,47-49. [2] A.爱尔台里,《高级超越函数》(张致中译),科学技术出版社,北京 (1957),45-46. [3] N.E.Noulund,Vorlesungen Über Difference Zenchnun g,Berlin (1923),29-37,110-156. [4] Tom M.Aposto,Introduction to Analytic Number,Springer-Verlag,Newyork,Iteidelberg,Berlin (1976). [5] W.H.拜尔,《标准数学手册》(荣现志、张顺忠译),化学工业出版社,北京 (1988),420-426. [6] 日本数学会编,《数学百科辞典》(石胜文译),科学出版社,北京 (1984),1034-1035.
计量
- 文章访问数: 2118
- HTML全文浏览量: 127
- PDF下载量: 707
- 被引次数: 0