留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹塑性有限变形的广义Prandtl-Reuss本构方程和应力共旋率研究

沈利君 潘立宙 何福保

沈利君, 潘立宙, 何福保. 弹塑性有限变形的广义Prandtl-Reuss本构方程和应力共旋率研究[J]. 应用数学和力学, 1998, 19(8): 689-696.
引用本文: 沈利君, 潘立宙, 何福保. 弹塑性有限变形的广义Prandtl-Reuss本构方程和应力共旋率研究[J]. 应用数学和力学, 1998, 19(8): 689-696.
Shen Lijun, Pan Lizhou, He Fubao. Study on the Generalized Prandtl-Reuss Constitutive Equation and the Corotational Rates of Stress Tensor[J]. Applied Mathematics and Mechanics, 1998, 19(8): 689-696.
Citation: Shen Lijun, Pan Lizhou, He Fubao. Study on the Generalized Prandtl-Reuss Constitutive Equation and the Corotational Rates of Stress Tensor[J]. Applied Mathematics and Mechanics, 1998, 19(8): 689-696.

弹塑性有限变形的广义Prandtl-Reuss本构方程和应力共旋率研究

详细信息
  • 中图分类号: O344

Study on the Generalized Prandtl-Reuss Constitutive Equation and the Corotational Rates of Stress Tensor

  • 摘要: 本文通过一种新的途径研究弹塑性有限变形的广义Prandtl-Reus本构方程.研究表明对于广义Prandtl-Reus本构方程,变形率弹塑性和分解的假设并非必须.研究了采用物质共旋率的广义Prandtl-Reus本构方程,从理论上分析了简单剪切应力振荡的原因.提出一种用于构造广义Prandtl-Reus本构方程中应力和背应力共旋率的修正相对旋率.最后,对简单剪切变形进行应力计算.
  • [1] E.H.Lee,Elastic-plastic deformations at finite strains,J.Appl.Mech.,ASM E,36(1969),1-6.
    [2] D.R.Metzger and R.N.Dubey,Corotational rates in constitutive modeling of elastic-plastic deformation,Int.J.Plasticity,4(1987),341-368.
    [3] J.C.Nagetaal and J.E.de Jong,Some aspects of non-isotropic work hardening in finite strain plasticity,Proc.of the Workshop on Plasticity of Metals at Finite Strain:Theory,Experiment and Computation,Eds.E.H.Lee and R.L.Mallett,Stanford University(1982),65-102.
    [4] E.H.Lee,R.L.Mallett and T.B.Wertheimer,Stress analysis for anisotropic hardening in finitedeformation plasticity,J.Appl.Mech.,ASME,50(1983),554-560.
    [5] Y.F.Dafalias,Corotational rates for kinematic hardening at large plastic deformations,J.Appl.Mech.,ASME,50(1983),561-565.
    [6] J.K.Dienes,On the analysis of rotation and stress rate in deforming bodies,Acta Mech.,32(1979),217-232.
    [7] J.K.Dienes,A discussion of material rotation and stress rate,Acta Mech.,65(1986),1-11.
    [8] P.M.Naghdi,A critical review of the state of finite plasticity,J.Appl.Math.Phys.(ZAMP),41(1990),315-393.
    [9] J.W.Hutchinson,Finite strain analysis of elastic-plastic solids and structures,Numerical Solution of Non linear Structural Problem,Ed.R.F.Hartung,ASME(1973),17-29.
    [10] V.Tvergaard,Effect of kinematic hardening on localized necking in biaxially stretched sheets,In t.J.Mech.Sci.,20(9)(1978),651-658.
    [11] G.Z.Voyiadjis and P.I.Kattan,Finite elastic-plastic analysis of torsion problems using different spin tensors,In t.J.Plasticity,8(1992),271-314.
    [12] C.Truesdell,The Elements of Continuum Mechanics,New York,Springer-Verlag(1966),39-41.
    [13] R.Sowerby and E.Chu,Rotations,stress rates and strain measures in homogeneous deformation processes,Int.J.Solids Structures,20(11-12)(1984),1037-1048.
  • 加载中
计量
  • 文章访问数:  3139
  • HTML全文浏览量:  156
  • PDF下载量:  856
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-10-17
  • 修回日期:  1998-05-11
  • 刊出日期:  1998-08-15

目录

    /

    返回文章
    返回