| [1] | B.Van Leer,Towards the ultimate conservative difference scheme,Ⅱ.Monotonicity andconservation combined in a second order scheme,J.Comp.Phys.,14(1974),361-370. | 
		
				| [2] | P.L.Roe,Numerical algorithms for the linear wave equation,Royal AircraftEstablishment Technical Report 81047(1981). | 
		
				| [3] | P.L.Roe,Some contributions to the modelling of discontinuous flows.in ProceedingsAMS-SLAM Sum,on Large-Scale Comp.in Fluid Mech.,1983,edited by B.E.Engquistet al.,Lectures in Appl.Math.,22,2(1985),673. | 
		
				| [4] | S.R.Chakravarthy and S.Osher,High resolution applications of the Oshcr upwindscheme for the Euler equations,AIAA paper presented at 6th CFD Conference(1983). | 
		
				| [5] | P.K.Sweby,High resolution schemes using flux limiters for hyperbolic conservationlaws,SIAM J.Numer.Anal.,21,5(1984),995-1011. | 
		
				| [6] | A.Harten,High resolution schemes for hyperbolic conservation laws,J.Comput.Phys.,49(1983),357-393. | 
		
				| [7] | A.Jameson,Positive schemes and shock modelling for compressible flows,Internat.J.for Numer.Methods Fluids,20(1995),743-770. | 
		
				| [8] | Liu Ruxun,The study of the remainder effects of FDS,J.Comput.Phys.9,4(1992),479.(in Chinese). | 
		
				| [9] | Liu Ruxun,The remainder-effect analysis of FDS and the applications to reforming oroptimazing of FDS,J.of CUST,24,3(1994),271.(in Chinese). | 
		
				| [10] | 刘儒勋、周朝,差分格式的余项效应分析及其应用,应用数学和力学 16,(1)(1995).87-96. |