Boundary Integral Equations for Bending Problem of Reissner’s Plates on Two-Parameter Foundation
-
摘要: 本文应用广义函数的Fourier积分变换,导出了双参数地基上Reissner板弯曲问题的两个基本解。在此基础上,从虚功原理出发,依据胡海昌导出的Reissner板弯曲理论,推导出适用于任意形状、任意荷载、任意边界条件情形的三个边界积分方程,为边界元法在这一问题中的应用提供了理论基础。文中给出了固支、简支、自由三类边界的算例,并与解析解比较,均得到满意的结果。Abstract: Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles,three boundary integral equations which fit for arbitrary shapes,loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates.It provides the fundamental theories for the application of BEM.A numerical example is given for clamped,simply supported and free boundary conditions.The results obtained are satisfactory as compared with the analytical methods.
-
[1] J.T.Katsikadelis and A.E.Armenakas,Plates on elastic foundation by BIE method,J.Engng.Mech.,110(7) (1984),1086-1105. [2] 李正良、邓安福,双参数地基上板弯曲问题的边界积分方程,应用数学和力学,13(7) (1992),633-642. [3] 王建国、黄茂光,两参数弹性地基板的边界元分析,土木工程学报,25(3) (1992),51-59. [4] 邓安福、李正良,弹性地基上Reissner板的基本解,固体力学学报,14(1) (1993),67-72. [5] Wang Jianguo,Wang Xiuxi and Huang Maokuang,Fundamental solutions and boundary integral equations for Reissner's plates on two parameter foundations,Int.J.Solids Structures,29(10) (1992),1233-1239. [6] 胡海昌,《弹性力学的变分原理及其应用》,科学出版社 (1987),483-484 [7] 柯列涅夫,《弹性地基上的板和梁计算问题》,立之译,建筑工业出版社(1958). [8] 王秉纲、支喜兰,弹性地基圆形厚板的有限层分析,《第一届全国解析与数值结合法学术会议论文集》,湖南大学出版社 (1990),161-166. [9] 雷小燕,解Reissner板弯曲问题的一个新的边界元法,工程力学,2(4) (1985),1-11.
计量
- 文章访问数: 2331
- HTML全文浏览量: 163
- PDF下载量: 615
- 被引次数: 0