留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多频激励Duffing系统的分岔和混沌*

毕勤胜 陈予恕 吴志强

毕勤胜, 陈予恕, 吴志强. 多频激励Duffing系统的分岔和混沌*[J]. 应用数学和力学, 1998, 19(2): 113-120.
引用本文: 毕勤胜, 陈予恕, 吴志强. 多频激励Duffing系统的分岔和混沌*[J]. 应用数学和力学, 1998, 19(2): 113-120.
Bi Qinsheng, Chen Yushu, Wu Zhiqiang. Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces[J]. Applied Mathematics and Mechanics, 1998, 19(2): 113-120.
Citation: Bi Qinsheng, Chen Yushu, Wu Zhiqiang. Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces[J]. Applied Mathematics and Mechanics, 1998, 19(2): 113-120.

多频激励Duffing系统的分岔和混沌*

基金项目: *国家自然科学基金;博士点基金

Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces

  • 摘要: 本文通过引入非线性频率,利用Floquet理论及解通过转迁集时的特性,研究了不可通约两周期激励作用下的Dufing方程在一次近似下的各种分岔模式及其转迁集,并指出其通向混沌可能的途径.
  • [1] W.H.Steeb.W.Erig and A,Kunick.Chaotic behaviour and limit cycle behaviour ofanharmonic systems with periodic external perturbations,Physics Letters A,93,6(1983),267-270.
    [2] S.Sato,M.Sano and Y.Sawada,Universal scaling property in bifurcation structure ofDuffing's and generalized Duffing 's equation,Physical Review A,28,3(1983),1654-1658.
    [3] Y.Ueda and N.Slamatsu,Chaotically transitional phenomena in the forced negativeresistance oscillator,Institute of Electrical Engineers Transactions on Circuits System,CAS-28,2(1981),217-223.
    [4] Q.S.Lu and C.W.S.To,Principle resonance of a nonlinear system with two-frequencyparametric and self-excitations,Nonlinear Dynamics,2,6(1991),419-444.
    [5] 陆启韶、黄克累、非线性动力学、分岔和混沌,全国一般力学发展与展望会议,哈尔滨(1993),11-18.
    [6] K.Yagasaki,M.Sakata and K.Kimura,Dynamics of weakly nonlinear system subjectedto combined parametric and external excitation,Trans.ASME,J.Appl.Mech.,57,1(1990),209-217.
    [7] K.Yagasaki,Chaos in weakly nonlinear oscillator with parametric and externalresonance,Trans.ASME,J.Appl.Mech.58.1(1991),244-250.
    [8] K.Yagasaki,Chaotic dynamics of a quasi-periodically forced beam,Trans.ASME.J.Appl.Mech.,59.1(1992),161-167.
    [9] 陈予恕、王德石,轴向激励下梁的混沌运动,非线性动力学学报,1(2)(1993),124-135.
    [10] A.Y.T.Leung and T.C.Fung,Construction of chaotic regions,J.Sound Vib.,131,3(1989),445-455.
    [11] Szemplinska-Stupnicka and Bajkowski.The 1/2 subharmonic resonance its transition tochaos motion in a nonlinear oscillator,IFTR Reports 4,1(1986),67-72.
    [12] R.Van Dooren.On the transition from regular to chaotic behaviour in the Duffingoscillator.J.Sound Vib.,123.2(1988).327-339.
    [13] T.Kapitaniak,Combined bifurcations and transition to chaos in a nonlinear oscillatorwith two external periodic forees.J.Sound Vib.121,2(1988),259-268.
    [14] T.Kapitaniak.Chaotic distribution of nonlinear systems perturbed by random noise.Physical Lefters A.116,6(1986).251-254.
    [15] T.Kapitaniak,A property of a stochastic response with bifurcation to nonlinear system.J.Sound Vib.,107.1(1986).177-180.
    [16] V.I.Arnold,Ordinary Differential Equation.M.I.T.Press(1973),22-26,48-52.
    [17] A.H.Nayfeh and D.T.Mook.Perturbation Methods.John Wiley & Sons,New York(1979),300-313.
    [18] R.Raty and J.Von Boehm,Absence of inversion-symmetric limit cycles of even periodand chaotic motion of Duffing oscillator.Physics Letters A.103,6(1984),288-292.
  • 加载中
计量
  • 文章访问数:  2731
  • HTML全文浏览量:  182
  • PDF下载量:  786
  • 被引次数: 0
出版历程
  • 收稿日期:  1995-04-15
  • 修回日期:  1996-06-30
  • 刊出日期:  1998-02-15

目录

    /

    返回文章
    返回