OGY方法的改进及证明*
An Improvement and Proof of OGY Method
-
摘要: OGY方法是混沌控制最重要的方法.通过选取系统参数的小变化,使双曲不动点变“稳定”.本文改进了OGY方法中的参数选取方法,并且完成了对OGY方法的严格证明.Abstract: OGY method is the most important method of controlling chaos. It stabilizes a hyperbolic periodic orbit by making small perturbations for a system parameter. This paper improves the method of choosing parameter, and gives a mathematics proof of it.
-
Key words:
- dynamical system /
- chaos /
- controlling chaos /
- hyperbolic periodic point
-
[1] E.Ott,C.Grebogi and J.A.Yorke,Contlling chaos,Phys.Rev.Lett.,64(1990),1196-1199. [2] H.A.Lauwerier,The structure of a strange attractor,Phys.21D(1986),146-154. [3] W.L.Ditto,et.al.,Experimental control of chaos,Phys.Rev.Lett.,65(1990),3211-3214. [4] J.Singer,et.al,Controlling a chaotic system,Phys.Rev.Lett.,66(1992),1123-1125. [5] D.Auerbach,et.al.,Controlling chaos in high dimensional system,Phys.Rev.Lett,69(1992),3479. [6] K.Phragas,Continues control of chaos by self-controlling feedback,Phys.Rev.A,170(1992),3479-3482. [7] V.Petrov,et.al.,A map-based algorithm for controlling low-dimensional chaos,J.Phys.Chem,96(1992),7506-7513.
计量
- 文章访问数: 2413
- HTML全文浏览量: 159
- PDF下载量: 687
- 被引次数: 0