二维各向异性压电介质机电耦合场的基本解*
Two-Dimensional Electroelastic Fundamental Solutions for General Anisotropic Piezoelectric Media
-
摘要: 本文研究各向异性压电介质的机电耦台问题.应用平面波分解法和留数定理,首次得到了线力和线电荷作用下一般二维各向异性压电介质机电耦合场的基本解.本文的解适用于平面问题、反平面问题以及平面和反平面相互耦合问题.作为特例,文中给出了横观各向同性压电介质的基本解.Abstract: Explicit foniulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subsequent application of the resiue calculus."Anisotropic" means thal any material symmetry restrictions are not assumed "Two dimensional" includes not only in-plane problems.but also anti-plane problems and problems in which in-plane and anti-plane deformations couple each other.As a special case,the solutions.for transversely isotropic piezoelectric media are given.
-
[1] B.Wang Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectricmaterial,Int.J.Solids Struct.,29.3(1992).293-308. [2] B.Wang.Three-dimensional analysis of a flat elliptical crack in a piezoelectric material,Int.J.Engng.Sci.,30,6(1992).781-701. [3] S.Y.Du,et al.,The general solution of anisotropic piezoelectric materials with an elliptic inclusion.Acta Mech.Sin.,10.3(1994),273-291. [4] Y.E.Pak.Linear electroelastic fracture mechanics of piezoelectric matenals.Int.J.Fracture.54(1992).79-100. [5] Z.Suo.et al.,Fracture mechanies for piezoelectric ceramics.J.Mech,Phys.Solids.40,4(1992),739-769. [6] H.Sosa.Plane problems in piezoelectric media with defects,int.J.Solids Struct.,28,4(1991).491-505. [7] J.S.Lee and L.Z.Jiang.A boundary integral fomulation and 2-D fundamental solutions for piezoclectrie media.Mech.Res.Commun.,21.1(1994),47-54. [8] Q.Y.Meng and S.Y.Du.The fundamental solutions of boundary integral equation fora two-dimensional piezoelectric media.Acta.Mech Sol.Sin.,16,1(1995).90-94.(in Chinese) [9] D.M.Barnett and J.Lothe.Dislocation and line charges in anisotropic piezoelectric insulators,Phys.Status.Solidi(b).67(1975),105-111. [10] I.M.Gel fand,M.I.Graev and N.Ya.Vilenkin,Generalized Functions.Vol.5 Academic Press,New York(1996).
计量
- 文章访问数: 2067
- HTML全文浏览量: 147
- PDF下载量: 528
- 被引次数: 0