留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载电流夹紧杆的非线性稳定性分析*

程昌钧 杨骁

程昌钧, 杨骁. 载电流夹紧杆的非线性稳定性分析*[J]. 应用数学和力学, 1997, 18(9): 769-777.
引用本文: 程昌钧, 杨骁. 载电流夹紧杆的非线性稳定性分析*[J]. 应用数学和力学, 1997, 18(9): 769-777.
Cheng Changiun, Yang Xiao. Nonlinear Stability Analysis of a Clamped Rod Carrying Electric Current[J]. Applied Mathematics and Mechanics, 1997, 18(9): 769-777.
Citation: Cheng Changiun, Yang Xiao. Nonlinear Stability Analysis of a Clamped Rod Carrying Electric Current[J]. Applied Mathematics and Mechanics, 1997, 18(9): 769-777.

载电流夹紧杆的非线性稳定性分析*

基金项目: * 国家教委博士点基金;甘肃省自然科学基金

Nonlinear Stability Analysis of a Clamped Rod Carrying Electric Current

  • 摘要: 本文研究了载电流夹紧杆在磁场作用下的非线性稳定性,其磁场由两根无限长相互平行的刚性直导线产生.杆的自然状态在刚性导线所在的平面内,并且与两刚性导线等距.首先,在空间变形的假定下,给出了问题的数学描述,讨论了线性化问题和临界电流.其次,证明了杆的过屈曲状态总是平面的.最后,数值计算了分支解的全局响应,得到了杆过屈曲状态的挠度、内力和弯矩的分布.结果表明,载电流杆既可发生超临界屈曲,又可发生次临屈界曲,其性态依赖于杆与导线间的距离;同时,在超临界的过屈曲状态上还存在极限点型的失稳,这与通常的压杆失稳有着本质的区别.
  • [1] H.H.Woodson and J.R.Melcher,Electromechanical Dynamics.John Wiley and Sons.New York(1968).
    [2] P.Wolfe.Equilibrum states of an elastic conductor in a magnetic field:a paradigm ofbifurcation,Trans.Amer.Math.Soc.,278(1983),377~387.
    [3] P.Wolfe.Bifurcation theory of an elastic conducting wires subjected magnetic forces,J.Elasticity,,23,2~3(1990),201~217.
    [4] T.J.Healey,Large rotating states of a conducting elastic wire in a magnetic field:subtlesymmetry and multiparameter bifurcation.J.of Elasticity,24(1990),211~227.
    [5] T.I.Seidman and P.Wolfe,Equilibrium states of an elastic conducting rod in amagnetic field.Arch.Ralional Mech.Anal.,102,4(1988),3O7~329.
    [6] P.Wolfe,Bifurcation theory of an elastic conducting rod in a magnetic field,QuartMech.APPl.Math.41,2(1988),265~279.
    [7] P.Wolfe,Bifurcation theory of a conducting rod subjected to magnetic forces,Int.JNonlinear Mechanics,25,5(1990),597~604.
    [8] S.S.Antman.Ordinary differential equations of one dimensional nonlinear e1asticity.Arch.Rational Mech.Anal.61(1976),3O7~393.
    [9] E.Bujano,G.Geymoat and T.Poston,Post-buckling behavionar of nonlinearyhyperelastic thin rod with cross-section invariant under the dihedral group Dn.,Arch.Rational thech.Anal,.89(1985),307~388.
    [10] 朱正佑、程昌钧,《分支问题的数值计算方法》,兰州大学出版社,兰州(1989).
  • 加载中
计量
  • 文章访问数:  2169
  • HTML全文浏览量:  102
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-03-08
  • 刊出日期:  1997-09-15

目录

    /

    返回文章
    返回