留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白噪声参激Hopf分叉系统的两次分叉研究

刘先斌 陈虬 陈大鹏

刘先斌, 陈虬, 陈大鹏. 白噪声参激Hopf分叉系统的两次分叉研究[J]. 应用数学和力学, 1997, 18(9): 779-788.
引用本文: 刘先斌, 陈虬, 陈大鹏. 白噪声参激Hopf分叉系统的两次分叉研究[J]. 应用数学和力学, 1997, 18(9): 779-788.
Liu Xianbin, Chen Qiu, Chen Dapeng. On the Two Bifurcatinos of a White-Noise Excited Hopf Bifurcation System[J]. Applied Mathematics and Mechanics, 1997, 18(9): 779-788.
Citation: Liu Xianbin, Chen Qiu, Chen Dapeng. On the Two Bifurcatinos of a White-Noise Excited Hopf Bifurcation System[J]. Applied Mathematics and Mechanics, 1997, 18(9): 779-788.

白噪声参激Hopf分叉系统的两次分叉研究

On the Two Bifurcatinos of a White-Noise Excited Hopf Bifurcation System

  • 摘要: 本文研究了白噪声参数激励下的Hopf分叉系统的两次分叉行为.明确了由于噪声的介入而使得系统的分叉类型产生了实质性的改变并导致了分叉点的漂移.
  • [1] G.Nicolis and I.Prigogine,Self-Orgamzation in Nonequilibrium Systems.Wiley,NewYork(1977).
    [2] H.Haken,Synergetics,Springer-Verlag,Berlin(1977).
    [3] R.Graham,Stochastic methods in nonequilibrium thermodynamics,in L.Arnold et al.eds.,Stochastic Nonlinear Systems in Physics,Chemiatry and Biotogy,Berlin,3pringer-Verlag(1981),202~212.
    [4] C.Meunier and A.D.Verga.Noise and bifurcation,J.Stat.Phys.,50,1~(1988),345~375.
    [5] N.Sri Namachchivaya,Stochastic bifurcation,APPl.Math.& Compt.,38(1990),101~159.
    [6] L.Arnold,Lyapunov exponents of nonlinear stochastic systems,Nonlinear StochasticDynamic Engrg.Systeins,F.Ziegler and G.I.Schueller eds.,Springer-Verlag,Berlin,New York(1987),181~203.
    [7] R.Z.Khasminskii,Necessary and sufficient conditions for the asymptotic stabilitv oflinear stochastic systems,Theory Prob.& APPl.,12,1(1967),144~147.
    [8] R.Z.Khasminskii,Stochastic Stability of Differential Equations,Sijthoff and Noordloff.Alphen aan den Rijn,the Netherlands,Rockville,Maryland.USA(1980).
    [9] L.Arnold and V.Wihstutz,eds.,Lyapunov exponents,Proc.of a Workshop,held inBremen,November 12~15,1984,Springer-Verlag,Berlin,Heidelberg(1986).
    [10] S.T.Ariaratnam and W.C.Xie,Lyapunov exponent and rotation number of a two-dimensional nilpotent stochastic system,Dyna.& Stab.Sys.,5,1(1990),1~9.
    [11] S.T.Ariaratnam,D.S.F.Tam and W.C.Xie,Lyapunov exponents of two-degree-of-freedom linear stochastic systems,Stochastic Structural Dynamics l,Y.K.Lin and I.Elishakoff eds.,Springer-Verlag,Berlin(1991),1~9.
    [12] N.Sri Namachchivaya and S.Talwar,Maximal Lyapunov exponent and rotationnumber for stochastically perturbed co-dimension two bifurcation,J.Sound & Vib,.169.3(1993),349~372.
    [13] L.Arnold and W.Kliemann,Qualitative theory of stochastic systems,Prob.Anal.andRelaled Topics.A.T.Bharucha-Reid eds.Academic Press,New York,Lindon.3(1983).1~79.
    [14] Z.Schuss,Theory and APPlications of Stochaslic Differential Equations,John Wiley &Sons,New York(1980).
    [15] K.Ito and H.P.McKean,Jr.,Diffusion Processes and Tleir Sample Paths.Springer-Verlag,New York(1965).
    [16] S.Karlin and H.M.Taylor,A Second Course in Stochastic Processes,Academic Press.New York(1981).
    [17] F.Kozin and S.Prodromou,Necessary and sufficient conditions for almost sure samplestability of linear Ito equations,SIAM J.APPl.Math.,21(1971),413~424.
    [18] R.R.Mitchell and F.Kozin,Sample stability of second order linear differentialequations with wide band noise coefficients,SIAM.J.APPl.Math.,27(1974),571~605.
    [19] K.Nishoka,On the stability of two-dimensional linear stochastic systems-Kotlai Math.Sem.Rep.,27(1976),221~230.
    [20] 徐利治、陈文忠,《渐近分析方法及应用》,国防工业出版社(1991).
    [21] 尼科里斯、普利高津,《探索复杂性》(罗久里,陈奎宁泽),四川教育出版社,成都(1986).
    [22] 刘先斌,《随机力学系统的分叉行为与变分方法研究》,西南交通大学博士学位论文,成都(1995).
  • 加载中
计量
  • 文章访问数:  2128
  • HTML全文浏览量:  134
  • PDF下载量:  561
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-03-06
  • 修回日期:  1997-05-03
  • 刊出日期:  1997-09-15

目录

    /

    返回文章
    返回