只含两个独立变量的扁壳大挠度问题修正的海林格-赖斯内变分泛函
A Modified Hellinger-Reissner Variational Functional Including only Two Independent Variables for Large Displacement of Thin Shallow Shell
-
摘要: 本文首先用海林格-赖斯内变分原理建立任意形状扁壳大挠度问题的泛函,然后用修正的变分原理导出适合于有限单元法的变分泛函表达式.泛函中只包含应力函数F和挠度W两个独立交量.其中也导出了在边界上用上述两个变量表示的中面位移的表达式.推导中考虑了边界的曲率,所以适用于任意形状的边界.Abstract: The variational functional of the Hellinger-Reissner variational principle for the large displacement problem of a thin shallow shell with an arbitrary shape is first established. Then the functional of the modifed principle suitable for the finite element method is derived. In the.functional only two independent variables, the deflection wand the stress function F are inchuded. The displacement expressions in the middle surface on the boundary of the shell is also derived by means of the previous two variables.
-
Key words:
- variational principle /
- shallow shell /
- large displacement /
- finite element method
-
[1] T.H,H,Pian and P.Tong,Basis of finite element methods for solid continua,Inter.J.for Num.Meth,in Engng.,1(1) (1989). [2] Kyuiehiro Washizu,Variational Methods in Elasticity and Plastieity,2nd edition,Perga mon Press (1975). [3] 钱伟长,弹性理论中广义变分原理的研究及其在有限单元计算中的应用.力学与实践,1(1)(1977). [4] 刘世宁.弹性扁壳的广义变分原理及扁壳理论的某些问题.力学学报.6(1) (1983). [5] 钱仍勋,扁壳大挠度问题修正的海林格一赖斯内变分原理,《1980年全国弹性塑性力学学术交流会论文选》(1980). [6] A.C.沃耳宙尔.《柔韧板与柔韧壳》,科学出版社(1983).
计量
- 文章访问数: 2296
- HTML全文浏览量: 124
- PDF下载量: 443
- 被引次数: 0