留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轭算子法和非线性动力系统的高阶规范形

张伟 陈予恕

张伟, 陈予恕. 共轭算子法和非线性动力系统的高阶规范形[J]. 应用数学和力学, 1997, 18(5): 421-432.
引用本文: 张伟, 陈予恕. 共轭算子法和非线性动力系统的高阶规范形[J]. 应用数学和力学, 1997, 18(5): 421-432.
Zhang Wei, Chen Yushu. Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System[J]. Applied Mathematics and Mechanics, 1997, 18(5): 421-432.
Citation: Zhang Wei, Chen Yushu. Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System[J]. Applied Mathematics and Mechanics, 1997, 18(5): 421-432.

共轭算子法和非线性动力系统的高阶规范形

基金项目: 国家自然科学基金
详细信息
  • 中图分类号: O177

Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System

  • 摘要: 规范形理论是研究非线性动力系统退化分含的强有力的方法.在本文里我们利用共轭算子法计算了具有幂零线性部分和不具有Z2-对称性的非线性动力系统的2阶、3阶和4阶规范形,讨论了几种余维3退化分含情况下的普适开析问题及其一些全局特性.
  • [1] V.1.Arnold,Geometrical Method in the Theory of Ordinary Dijjerential Equations,Springer-Verlag,Berlin(1983).
    [2] R.I.Bogdanov,Bifurcation of the limit cycle of a family of plane vector field,Sel.Math.Sov.,1(1981),373-387.
    [3] R.I.Bogdanov,Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues,Sel.Math.Sov.,1(1981),389-421.
    [4] A.D.Bruno,Local Methods in Nonlinear Differential Equations,Springer-Verlag,Berlin(1989).
    [5] S.N.Chow and J.K.Hale,Methods of Bifurcation Theory,Springer-Verlag,Berlin(1982).
    [6] S.N.Chow and D.Wang,Normal form of bifurcating periodic orbits,Multi-parameter bifurcation theory,M.Golubitsky and J.Guckenheimer(eds),Contemporary Math.,56(1986),9-18.
    [7] R.Cushman and J.Sanders,Nilpotent normal forms and representation theory of s1(2,R),Multi-parameter bifurcation theory,M.Golubitsky and J.Gguckenheimer(eds),Contemporary.Math.,56(1986),31-51.
    [8] R.Cushman and J.Sanders;Splitting algorithm for nilpotent normal forms,Dynamics and Stabilitv oJSystems.2(1988),235-246.
    [9] R.Cushman,A.Deprit and R.Mosad,Normal forms and representation theory,J.Math.Phys.,24(1983),2103-2116.
    [10] C.Elphick,E.Tirapegui,M.E.Bracher,P.Coullet and G.Iooss,A simple global characterization for normal forms of singular vector fields.Phys.D.,29(1987),95-117.
    [11] J.Guckenheimer and P.Holmes.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields,Springer-Verlag,Berlin(1983).
    [12] R.Rand and D.Armbruster,Perturbation Method,Bifurcation Theory and Computer Algebra,Springer-Verlag,Berlin(1987).
    [13] F.Takens,Normal forms for certain singularities of vector fields,Ann.Inst.Fourier,23(1973),163-195.
    [14] F.Takens,Singularities of vector fields,Publ.Math.IHES,43(1974),47-100.
    [15] P.Holmes and D.A.Rand,Phase portraits and bifurcations of the nonlinear oscillator x+(a+yx2)x+βx+δ3=0,Int.J.Non-Linear Mech.,15(1980),449-458.
    [16] P.Holmes,Center manifolds,normal forms and bifurcations of vector Gelds with application to coupling between periodic and steady motions,Phy.D.,2(1981),449-481.
    [17] A.K.Bajaj,Bifurcations in a parametrically excited nonlinear oscillator,Int.J.Nonlinear Mech.,22(1987),47-59.
    [18] A.K.Bajaj,Nonlinear dynamics of tubes carrying a pulsatile folw,Dynamics and Stability of Systems,2(1987),19-41.
    [19] J.Shaw and S.W.Shaw,The effects of unbalance on oil whirl,Nonlinear Dynamic's,1(1990),293-311.
    [20] N.Sri.Namachchivaya,Co-dimension two bifurcations in the presence of noise,ASME,J.Appl.Mech.,58(1991),259-265.
    [21] W.Zhang and Q.Z.Huo,Degenerate bifurcations of codimension two in nonlinear oscillator under combined parametric and forcing excitation,Acta Mechanica Sinica,24(1992),717-727.
    [22] W.Zhang and Q.Z.1-Iuo,Degenerate bifurcations of codimension two in nonlinear oscillator for 1/2 subharmonic resonance-primary parametric resonance,Theory,Method and Application of Nonlinear Mechanics,C.J.Cheng and Z.H.Guo(eds),Modern Mathematics and Mechanics(MMM) IV(1991),431-437.
    [23] W.Zhang and Q.Z.Huo,Bifurcations of the cusp singularity in a nonlinear oscillator under combined parametric and forcing excitation,J.Vibration Engineering,6(1992),355-366.
    [24] Y.S.Chen and J.Xu,Periodic respones and bifurcation theory of nonlinear Hill system,J.Nonlinear Dynamics in Science and Technology,1(1993),1-14.
    [25] F.Dumortier,R.Roussarie aid J.Sotomayor,Generic 3-parameter families of vector fields on the plane,unfolding a singularity with nilpotent linear part the cusp case,Ergodic Theory and Dynamical,Systems,7(1987),375-413.
    [26] F.Dumortier,R.Roussarie and J.Sotomayor,Generic 3-parameter families of planar vector fields,unfolding of saddle,focus and elliptic singularities with nilpotent linear parts,Preprint.(1990).
    [27] F.Dumortier and P.Fiddelares,Quadratic models for generic local 3 parameter bifurcations on the plane,Trans.Amer.Math.Soc.,326(1991),101-126.
    [28] D.Wang,An introduction to the normal form theory of ordinary differentital equations,Advances in Mathematics,19(1990),38-71.
    [29] W.Zhang,Computation of the higher order normal form and codimension three degenerate bifurcation in a nonlinear dynamical system with Z2-symmetry,Acta Mechanica Sinica,25(1993),548-559.
    [30] A.E.Taylor and D.C.Lay,Introduction to Functional Analysis,John Wiley and Sons,Interscience(1980).
  • 加载中
计量
  • 文章访问数:  3043
  • HTML全文浏览量:  219
  • PDF下载量:  705
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-03-06
  • 刊出日期:  1997-05-15

目录

    /

    返回文章
    返回