求解非定常非完整约束多体系统动力学的一种方法
A Method for Solving the Dynamics of Multibody Systems With Rheonomic and Nonholonomic Constraints
-
摘要: 通过对约束矩阵进行奇异值分解,将系统的动力学方程沿与约束相容和不相容的两个方向上投影,求解受非定常非完整约束的多体系统动力学问题,并给出了求约束反力的公式和避免违约的一种方法;这种解法不仅不依赖于描述系统的坐标选择,而且计算效率高。最后举了一个说明性例子。Abstract: The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.
-
[1] N. K.Mani, E. J. Hang and K. E. Atkinson, Application of singular value decomposition for analysis of mechanical system dynamics, J. Mech, Trans, Auto, Des, 107(1985). 82-87. [2] C., G. Lung and G. M.Lance, A differentiable null space method for constrained dynamic analysis. J. Mech, Trans, Auto, Des, 109(1987),405-411 [3] S. S. Kim and M. J. Vanderploeg, QR decomposition for slate space representation of constrained mechanical dynamic systems, J. Afewh. Trans. Auto. Des. 108(1986), 183-188. [4] T. W. Park and E. J. Huag, A hybrid numerical integration method for machine dynamic simulation, J. Mech. Trans, Auto. Des, 108(1986),211-216. [5] W. Blajer, A projection method approach to constrained dynamic analysis, J. Appl. Mech, 59(1992), 643-649. [6] 水小平,奇异值分解对非定常约束多体系统的动力学分析,兵工学报,(2) (1994), 89-92
计量
- 文章访问数: 2884
- HTML全文浏览量: 163
- PDF下载量: 663
- 被引次数: 0