闭轨道直径函数的不动点
Fixed Point with Orbital Diametral Function
-
摘要: 由引入最一般的压缩条件,在完备度量空间中,对一类具有闭轨道直径函数的自映射证明了不动点的存在性.这一条件不仅包活了Kannan型也包括了Reioh型、Hardy和Rosers型压缩条件.给出的实例表明了本文方法的有效性.Abstract: A foremost general contraction condition is introduced to prove the existence of fixed points for a self-mapping in a somplete metric space whose orbital diametral functions are closed. This condition covers not only the Kannan type but also covers Reich, and Hardy & Roger's type contractive conditions. An example is given in its support.
-
Key words:
- closed orbital diametral function /
- fixed point
-
[1] G.E.Hardy and T.D.Rogers,A generalization of a fixed point theorem of Reich,Canad.Math.Bull..16(1973),201-206. [2] A.K.Kalinde,On a fixed point theorem for Kannan's type mappings.Math.Japonica 33,5(1988),721-723. [3] R.Kannan,Some results on fixed point,Bull.Calcutta Math.Soc.,60(1968),71-76. [4] S.Reich,Some remark's concerning contraction mappings.Canad.Math.Bull.,14(1971),121-124.
计量
- 文章访问数: 1793
- HTML全文浏览量: 114
- PDF下载量: 520
- 被引次数: 0