广义二阶流体管内轴向流动
General Second Order Fluid Flow in a Pipe
-
摘要: 在流体的本构关系中引入分数阶导数运算,对于介于粘性与弹性之间的流体的描述更具有合理性。本文将这种关系引入二阶流体,研究其管内轴向流动。我们先求出了1/2阶导数的解析解,用以验证Laplace数值反演的CRUMP方法的有效性。然后用CRUMP法分析二阶流体管内轴向流动的特征。分析表明粘弹性特征越明显的流体,其速度与应力对分数导数的阶数越具有敏感性。Abstract: It is more satisfactory for fluid materials between viscous and elastic to introducethe fractional calculus approach into the constitutive relationship. This paper employsthe fractional calculus approach to study second fluid flow in a paper. First, we derivethe analytical solution which the derivate order is half and then with the analytical solution we verify the reliability of Laplace numerical inversion based on Crumpalgouithm for the problem, and finally we analyze the characteristics of second order fluid flow in a pipe by using Crump method. The results indicate that the more obviousthe viscoelastic properties of fluid is, the more sensitive the dependence of velocity andstress on fractional derivative order is.
-
Key words:
- second order fluids /
- axial flow in a pipe /
- integral transforrnation
-
[1] 韩式方,《非牛顿流体连续介质力学》,四川科学技术出版社(1987). [2] 伍岳庆,非牛顿流体管内非定常流动研究,中国科学院成都分院,硕士论文,(1988). [3] 刘慈群、黄军旗.非牛顿流体管内不定常流的解析解,应用数学和力学,10(11)(1989). [4] G, L.Slonimsky,Laws of mechanical relaxation processes in polymers,J.Polym.Sci, C, 16(1967),1667-1672. [5] R.L.B agley, A theoretical bzsis for the applicztion of fractional calculus to viscvelasticity, J.of Rheology, 27(3)(1983),201-210. [6] Lynn Rogers.Operators and fractional derivatives for viscoelastic contsitutive equations, J, of R heology, 27(4)(1983), 351-372. [7] Chr.Friedrich, Relaxation and retardation function of the maxwell model with fractional derivatives,Rheologg Acta, 30(1991).151-159. [8] 李健、江体乾,带分数导数的粘弹性流体本构方程的研究,第四届全国多相流,非牛顿流,物理化学流学术会议,西安石油学院出版社,(1993). [9] K.S, Crump,,Numerical inversion of laplace transforms using a fourier series approaim ation,l.Assoc, comput, Mach,,23(1)(1976),89-96.
计量
- 文章访问数: 2450
- HTML全文浏览量: 179
- PDF下载量: 797
- 被引次数: 0